
ROBOT GRAPHIC SIMULATION TESTBED

Final Report

National Aeronautics and Space Administration

Marshall Space Flight Center

Prepared by:

Dr George E. Cook

Dr Janos Sztipanovits

Dr Csaba Biegl

Dr Gabor Karsai

James F. Springfield

Department of Electrical Engineering

Vanderbilt University

Nashville, TN 37235, USA

Contracting Officer Representative: Dr Kenneth R. Fernandez

NASA Grant No. NAG8-690

August, 1991

(NASA-CR-18t_99B) _,Og_T ;RAPHIC $IMULATI_'N

T=STEEq Final RerDort (V_n Jerbilt Univ.)

119 _: CSCL 06K

• III61_AI _Oqitl.H|

lOlOlt ILLUST_TI_

No2-i1637

Uncl as

,3/5 0+}49373

Contents

1

2

3

4

Executive Summary 4

Introduction 6

Workstation Implementation of ROBOSIM

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

7

The HP350SRX Graphics Workstation 7

The MD Program 10

The R2 Program 12

Simulation Li[_rary and Environment 28

Inverse Kinematics 29

Collision Detection 30

Example: Surgical Positioner 35

Port to the Intergraph Workstation 39

Intelligent Graphic Modeling Environment

4.1

4.2

4.3

4.4

4.5

41

Critique of the Basic Graphical Modeling Technique 41

System Design of the Graphic Simulation Environment 42

Agent command interface 44

4.3.1 Command format 45

4.3.2 Error reporting 45

4.3.3 Object creation commands 47

4.3.4 Object transformation commands 47

4.3.5 Composite objects 47

4.3.6 ROBOSIM objects 48

4.3.7 Agents 48

4.3.8 Object removal 48

4.3.9 Agent positioning 48

4.3.10 Position reporting 51

4.3.11 Grasping 51

4.3.12 General graphics setup 52

4.3.13 General commands 52

Automation Interface for Robot Modeling Systems 53

The HDL System 64

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7

Introduction 64
Semanticsof HDL 65
Declaration of Primitive Modules 65
Declaration of Compound Modules 67

HDL Programmatic Interface 70

Monitor 72

An example 74

4.6 Interfacing of HDL to Agent 77

5 Case Studies

5.1

5.2

5.3

5.4

78

Space Station Modeling Using ROBOSIM 78

Operational Modeling of the Space Station 80

Study of the Space Station ECLSS 87

5.3.1 Objectives of the ECLSS study 88

5.3.2 Model-based diagnostic system 89

ECLSS Study: Diagnostics and Repair 93

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5

5.4.6

Process and Fault Modeling for the ECLSS 93

Hierarchical Process Model (HPM) of the ECLSS 93
Declarative Form of the HPM 95

Hierarchical Fault Models (HFM) for the ECLSS/PWP 95

Definition of repair actions 97

Integrated monitoring and diagnostics with robot simulation 99

6 Suggestions for Future Work 101

A Structure Declarations for the Simulation Library 103

B Simulation Library Functions 107

C HDL/C Interface 110

C.1 HDL/C Interface 110

C.1.1 HDL Parameters 110

C.1.2 HDL Context Tables 111

C.1.3 Preparing and loading "Plain" C scripts 112

C.1.4 Preparing "Embedded" C scripts 115

List of Figures

3.1 Creating a custom object 20

3.2 Cylinder and custom object before and after attachment 21

3.3 Base link with joints being checked 22

3.4 Base link being saved and compiled by ROBOSIM 23

3.5 First link being saved and compiled by ROBOSIM 24

4.1 Main functional components of the simulation environment 43

4.2 Layers of the Multigraph Architecture 56

4.3 Structure of the Multigraph Architecture 57

4.4 Graphical model for a reconfigurable controller 60

4.5 Structure of the MEE 63

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Solar panels - I 80

Solar panels - II 81

Servicing Robot 82

Middle truss assembly 83

Space Station Model 84

Solar Panel Motion 85

A Hierarchical Process Model 91

Fault Propagation Digraph of a Process 92

Process Hierarchy of the ECLSS 94

Declarative form of the AirControl Process 96

Fault Diagnosis Declarative Form 98

Integrated 3D models and fault monitoring/repair system 100

3

Chapter 1

Executive Summary

The objective of this research program was twofold. First, the basic capabilities of RO-

BOSIM (a graphical simulation system developed jointly by NASA-MSFC and Vanderbilt

University) were improved and extended by taking advantage of advanced graphic work-

station technology and artificial intelligence (AI) programming techniques. Second, the

scope of the graphic simulation testbed was extended to include general problems of Space
Station automation.

The first objective is a logical continuation of the joint NASA/Vanderbilt ROBOSIM

development. State-of-the-art graphic workstations offer new opportunities for simulation

of complex, linked geometrical structures. Hardware support for 3-D graphics and high

processing performance make high resolution solid modeling, collision detection, and sim-

ulation of structural dynamics computationally feasible. With the introduction of new AI

programming techniques, graphic structural simulation can be combined with high-level,

AI-based control functions; thus the simulation testbed can support studies in task level

planning and in other issues of autonomous control.

The Space Station is a vastly complex system with many interacting subsystems. Au-

tomation, being a decisive factor in crew productivity and safety, is expected to play a

major role in the Space Station operation. The rationale for the second objective of this

project is based on the fact that formulation and testing of automation concepts require

understanding the behavior of and the interactions among the various subsystems. For

example, the Environmental Control and Life Support System (ECLSS), which is one of

the most complex subsystems in the Space Station, is an aggregate of interdependent me-

chanical, chemical and electrical processes. These processes interact with each other and

impose constraints on the operation of other subsystems in many levels. The following list

includes a few examples for these interactions:

• the air temperature control in the ECLSS is directly related to the Thermal subsys-

tem,

• the ECLSS is one of the major electric energy consumers in the Space Station,

• therefore its operation interacts with the Electric Power Supply subsystem,

4

Executive Summary 5

• effects of the ECLSS operation on the utility consumers (air, potable water, hygienic

water, wash water, etc.),

• waste material removal may interact with low-gravity experiments.

Design and testing of automation concepts demand modeling of the affected processes,

their interactions and that of the proposed control systems. These models may vary in

objective and sophistication, in accordance with the level of control functions to be studied.

The analysis of elementary control loops that maintain the value of a process variable

require the use of high fidelity dynamic simulation. The testing and validation of higher

level and autonomous controllers will necessitate the use of AI-based models representing

qualitative as well as quantitative features of processes. Extended modeling techniques

include the explicit description of hierarchical process structures, causal relations, fault

propagation models and component hierarchies.

The automation testbed was designed to facilitate studies in Space Station automation

concepts. Its main purpose is to provide cost-effective solutions for the analysis of the

interactions among work packages, and for experiments with the scars and hooks provided

by the IOC automation concepts for advanced automation. Supplementing the ROBOSIM

graphical simulation package with the required new capabilities is a complex task. It

requires significant extension of the system in many ways, including the incorporation of

AI-based modeling tools, the application of automatic program generation facilities for

fast prototyping, and the introduction of advmlced software engineering techniques for

managing large-scale models.

In this Report, the steps of this process are discussed. In the first section the new

capabilities of the graphic workstation version of ROBOSIM are described. The work ac-

complished in the first year of the project has resulted in significantly improved 3-D graphic

capabilities, interactive model building tools, and a solution for collision detection. The sec-

ond section discusses the design details and implementation of a new graphical simulation

package. The new design makes it possible to integrate the system with tools supporting

automation studies as well. The third section provides case studies that demonstrate the

usage and capabilities of an integrated structural modeling and automation testbed. The

case studies include the structural model of the Space Station, and a process and failure

model of the ECLSS Potable Water Processing subsystem coupled with the geometrical

modeling environment. The fourth section describes some suggestions for future research

and development work.

The work described in this paper has been mostly performed on a Hewlett Packard

9000/350 SRX graphics workstation and on an Intergraph graphics workstation. We would

like to express our gratitude to the Industrual Application Center of the Hewlett Packard

Company and Intergraph Corp. for their support which made this research possible.

Chapter 2

Introduction

This report is organized into five chapters. Chapter 3 which follows the introduction

describes the work done in porting ROBOSIM to the HP350SRX graphics workstation.

New additional ROBOSIM features, like collision detection and new kinematics simulation

methods are also discussed here. The chapter concludes with a brief description of the

ROBOSIM port to the Intergraph workstation.

Chapter 4 can be divided into three parts. In the first part - based on the experiences

of the work on ROBOSIM - we describe a new graphics structural modeling environment,

which is a part of a new knowledge-based multiple aspect modeling testbed. The second

part of the chapter contains a description of the knowledge-based modeling methodologies

and tools already available to us. The chapter concludes with the description of a model-

based package which can be used for designing and simulating robot controllers, together

with the graphics modeling environment mentioned above.

Chapter 5 contains three case studies in the area of Space Station automation. First a

geometrical structural model of the station is presented. This model was developed using

the ROBOSIM package. Next the possible application areas of an integrated modeling

environment in the testing of different Space Station operations are discussed. One of these

possible application areas is the modeling of the Environmental Control and Life Support

System (ECLSS), which is one of the most complex subsystems of the station. Using the

multiple aspect modeling methodology presented in Chapter 3 we built a fault propagation

model of this system and integrated it with the geometrical modeling environment: this is

described at the end of the chapter.

Chapter 6 concludes the report by suggesting possible future research directions for the

application of these modeling techniques in automation systems.

6

Chapter 3

Workstation Implementation of
ROBOSIM

This chapter describes the work which has been done in order to enhance the capabilities of

the ROBOSIM graphical structure modeling package. ROBOSIM in its original form was a

command-oriented modeling language, with a not too user friendly programming interface.

Furthermore its graphics capabilities were limited, due to the fact that originally it was

designed for use on a remote graphics terminal attached to a VAX-like processor, which

did not offer many of the features available on modern graphics engineering workstations.

Further additions include simulation libraries for collision detection and dynamics, which

are also described later in this chapter.

3.1 The HP350SRX Graphics Workstation

Since part of the impetus for extending ROBOSIM was the capabilities provided by graph-

ics workstations, it is necessary to understand these capabilities. All of the information

that follows is specifically oriented towards the HP350SRX workstation; however, much is

generally applicable to other workstations.

The HP350SRX workstation has a pixel resolution of 1280x1024 pixels. There are

16 image planes and 4 overlay planes. Each plane is one bit per pixel. Typically the

image planes are used for graphics and the overlay planes are used for XWindows. When

the image planes are rapidly changed (animation) flickering results if the images are not

double buffered. This means that only 8 image planes are actually available. While one

set of image planes are being displayed, the other set is being changed. Then, the sets
are switched. This results in flicker-free motion at the cost of reduced numbers of colors.

Since only eight planes are used at one time, only 256 colors can be displayed at one time.

The overlay planes, if used, will hide the image planes. Therefore, if X is being used, a

transparent window is created. This allows X applications to be run while seeing what is

in the image planes.

The most important capability of the workstation is the increased speed and facilitics

Workstation Implementation of ROBOSIM 8

provided by the Starbase graphics library and the hardware graphics accelerator. These

facilities allow display of three dimensional graphics objects with options such as hidden

surface removal, shading, perspective views, and colors.

The hardware accelerator includes a matrix multiplier. This allows multiplication of

4x4 matrices much faster than could be done in software. This facility is used to a great

extent in display of objects. There axe many coordinate transformations occurring during

display such as rotation and translation of objects in modeling coordinates, conversion

of modeling to world coordinates, perspective transformations, world to virtual device

coordinates, and virtual device to device coordinates. Each of these involves multiplying

by matrices; also, there can be many levels of transformations in modeling coordinates.

All graphic objects are "put through the pipeline" of transformations, and the hardware

multiplier is a key part in providing real-time speed. There is one difference between the

transformation matrices used in Starbase and the ones traditionally used by roboticists.

The graphics standard uses matrices that are the transpose of the ones used in robotics.

Therefore, all matrices in the programs are represented in the graphics standard form. For

this reason, all matrix equations had to be the reverse of those used in robotics.

Another useful feature of Starbase is the display list. A display list is made up of

segments. Each segment can be thought of as a procedure. One segment can call another

and the called segment returns to the calling segment when finished. Almost any Starbase

function can be placed in a segment. Then, whenever that segment is traversed those

commands are executed. This is very useful; for instance, all of the Starbase polygon

procedure calls that make up a robot link can be placed in a segment with a transformation

matrix that represents the transformation resulting from a particular value for that link's

joint variable. Then, changing the transformation matrix in the display list will result

in that link "moving" the next time that display list is traversed. A segment network is

shown below. It has been printed from the simulation program for an actual robot. It has

been abbreviated in parts. "fd" is the file descriptor returned by Starbase when a display

is opened for graphic output. The {} indicate an array that has not been printed out.

Segment #0 is the main segment. It has a call to segment #1. Segment #1 is for a robot.

If there were another robot, then there would be another call in segment #0. Segment

#1 first pushes a matrix onto the transformation stack. This transformation corresponds

to the position of the robot in the world. Next, segments 2 - 9 are called. In segment

#2 the first concat_transformation3d is a transformation describing the structure of the

link. The second transformation describes the current value of the joint variable. Concat

multiplies the matrix by whatever is currently on the transformation stack and pushes the

result back on the stack. Now, the polygons in segment #2 are displayed after first being

transformed by whatever is on top of the transformation stack. Segment #2 then returns

control to segment #1, and traversal continues through segment #9. When segment #9

returns, the top of the matrix is popped off and returned to the state it was in before

traversal began.

segment 0 begin

move3d(fd, O, O, O)

Workstation Implementation of ROBOSIM 9

dl_label(fd, 1)

call_segment(fd, 1)

segment 0 end

segment I begin

push_matrix3d(fd, {})

call_segment(fd, 2)

call_segment(fd, 3)

call_segment(fd, 4)

call_segment(fd, 5)

call_segment(fd, 6)

call_segment(fd, 7)

call_segment(fd, 8)

call_segment(fd, 9)

pop_matrix(fd)

segment i end

segment 2 begin

concat_transformationSd(fd, {}, O, O)

concat_transformation3d(fd, {}, O, O)

polygonSd(fd, {}, 5, 1)

polygon3d(fd, {}, 5, 1)

segment 2 end

segment 9 begin

concat_transformation3d(fd, {}, O, O)

concat_transformation3d(fd, {}, O, O)

polygon3d(fd, {}, 5, 1)

polygon3d(fd, {}, 5, 1)

segment 9 end

The ability to pick an object that is displayed on the screen is a very important part

in the graphics editor. Starbase provides a simple way to do this. When a display list is

displayed on the screen the points making up an object are eventually converted to actual

device coordinates. Now, given a range of coordinates, Starbase can return information

regarding what is displayed in that range. This consists of the segment number, the most

Workstation Implementation of ROBOSIM 10

recent label within that segment (if any), and the offset from that label. For instance, if the

first polygon in segment #9 fell within that window, then Starbase would return segment

#9, label #0 (there is no label in segment #9), and an offset of 3 (the first polygon is

the third command in segment #9). Starbase can even return the entire path through the

display list, giving all called segments and offsets leading up to the polygon in segment
#9.

XWindows provides the ability to read the mouse position. A program can read the

position of the mouse and convert that position to the form required by Starbase. Thus,

one can use the mouse to point to an object on the screen, and a program can figure out
what is being pointed to.

XWindows also provides many other facilities that proved to be useful in implementing

this work. One of the most useful aspects of X is the menus. Using X, one can implement

menus very easily. This allows user-friendly interfaces to be written without having to deal

with the complexities introduced. For instance, a set of menus can be created to manipulate

some display list. The menu entries are created and X is told which procedures to execute

upon selection of the corresponding menu entry. A transparent window in the center of

the screen allows the image planes (graphics planes) to be seen through the X application.

There are also two other peripherals which have been extensively used. The button

box and the knob box provide very easily used input capabilities. Once the devices have

been opened for use by a program it is quite simple to poll them. The button box returns

an integer corresponding to the button pushed, if any. The knob box is just as simple to
poll, but it has additional features. The knob box has nine knobs and each can be set

differently. A knob's range can be set; for example, a knob can return a number between

-1. and 1. or it can return a number between 10. and 100. Also, the knobcan be preset

to a particular value. This means that whatever position the knob is in, that position
corresponds to the set value.

The features of the HP350SRX workstation make it ideal for use in high-performance

graphics applications. The resolution and color capability allow for sophisticated graphics.

The graphics accelerator provides speed, and the display lists provide easy access to graph-

ics hardware. XWindows allows friendly and generic user interfaces to be written simply

and easily. And the peripherals such as the mouse, button box, and knob box provide a

flexible and diverse range of input.

3.2 The MD Program

Porting ROBOSIM to the HP350SRX workstation added no additional features to those

found in the VAX version. ROBOSIM on the HP no longer used the TEKTRONIX 4014

interface, although XWindows allowed certain windows to operate in a TEKTRONIX

emulator mode. ROBOSIM was adapted to use the Starbase graphics move and draw

commands. ROBOSIM still performed all transformations internally, but used a window

from X and Starbase graphics for output. This allowed one window in which to run the

process and another in which to see the output. This capability spurred an early attempt

Workstation Implementation of ROBOSI_I 11

at allowing an interactive mode of operation in which ROBOSIM commands were typed

in, and the effects were immediately seen in the display window. However, this method

was never effectively implemented or used.

The MD program originally evolved as a means of displaying a robot that had been

generated by ROBOSIM. Through this program, a user could display a robot and set colors

and other attributes such as hidden surface removal, shading, and specular reflection. Also,

the camera position (i.e. the position from which the object is looked at) could be changed

to provide views of the object from many different perspectives.

Extensions to the basic MD allowed multiple robots and objects, and it even has pro-

visions to accept joint angles and other parameters from a separate process. With this

feature, a primitive simulation can be run. An early use of this involved a lisp process

piping commands to a space station model that would orient the solar collectors to receive

maximum exposure. MD was also able to run in a mode in which joint angles were read

from a file and the robot's joints were cycled through these. This feature was used for

simple simulations of downhand welding. Two robots, one a six degree of freedom robot,

and the other a two degree of freedom positioner, were simulated. The robot performed

the welding and the positioner assisted in maintaining the downhand position and proper

orientation of the wire feed to the direction of movement of the torch. The joint angles

were generated by a separate program and stored in two files. Using MD, one could look

at the robots from various positions to visually verify that the downhand welding was

working correctly.

The basic structure of MD involves loading the link files of a robot and creating display

segments corresponding to each link. Each segment has a transformation matrix and a

polygon list. Also, there is a segment for the entire robot that has a transformation matrix

describing the position of the robot in the world, and commands that set the color and

other parameters for the robot. The input devices for MD are the button box and the

knob box. These devices provide the ability to turn functions of Starbase on and off and

to adjust parameters of Starbase. For most functions, there is a one-to-one correspondence

between Starbase functions and MD functions. MD is useful for looking at a robot after it

has been made by ROBOSIM. The robot can be brought up on the screen, looked at from

various positions, and the joints can be moved.

The capabilities of MD for more complicated simulation were very limited, and further

work on MD was replaced by the development of the simulation library and environment.

MD is still used for photographing robots and other structures such as the space station.

It is also still used for quickly verifying robots or other structures that have been con-

structed with ROBOSIM. Although it is not used directly for simulation purposes now,

the components of it dealing with graphics manipulations are still used in R2 and other

programs.

Workstation Implemen ration of ROB OSIM 12

3.3 The R2 Program

The development of R2 arose from the capabilities provided by MD and the need for

an easier to use and more flexible interface to ROBOSIM. R2 was designed to overcome

some of the limitations of ROBOSIM while taking advantage of the facilities available

on graphics workstations. However, complete compatibility with ROBOSIM was desired;

this was accomplished by the output of R2 being ROBOSIM code. Having R2 generate

ROBOSIM code allowed R2 to be much simpler. It was not necessary to reimplement

what ROBOSIM already provided. This method has proved to be the most flexible. Now,

robots can be designed by writing a ROBOSIM program, using R2 to generate a ROBOSIM

program, directly generating files from custom programs, or any combination thereof.

ROBOSIM provides a simple way in which to design robots. Based on the specifications

in a user-written 'program' a file for each link is generated. This file contains the vector list

that is used to draw the robot, the A-matrix, the Denavit-Hartenburg parameters, joint

types, and the pseudo-inertia matrix. However, this method requires the user to maintain

a lot of information that the computer can handle much more easily. Since ROBOSIM

creates every object at the origin, the user must keep track of each objects' dimensions in

order to place it such that it will be in the proper position and orientation with respect

to the other objects in a link. The only other method that ROBOSIM allows is to load

in data files that have been generated by some other method. This requires a custom

written FORTRAN program with appropriate calls to ROBOSIM functions. This is the

most flexible way in which to use ROBOSIM, but also the most difficult. What is needed

is a flexible, but user-friendly, environment in which to design robots.

Before discussing the internals of R2, it is useful to see how it works from a user's point

of view. What follows is basically a user's manual for R2. However, some knowledge of

ROBOSIM is expected. For information see the ROBOSIM manual and tutorial. It is

recommended to read the following while running R2. Proper execution of all capabilities

requires the proper setup of several files and directories. This is explained in the ROBOSIM

manual. Execute R2 from your 'source' directory.

First, R2 is designed to run under XWindows. Therefore, type xstart to run XWindows.

To execute the program type: r2 [-t terminal] [-m message_level]. The default

terminal type is "hp98721". The only other terminal currently recognized is a "hp300h".

The message level refers to the amount of help that is available; the default level is

level 0. At this level only error messages are displayed. At level 1, a small window is

created in the upper left corner, then, whenever the program is waiting for input from

the user, an appropriate message is displayed. Level 2 is the highest level; after any menu

item is selected, a window with information describing the command is displayed. When

the information has been read, the user clicks the mouse on the "OK" button. The user

interface consists of the graphics window, where the model is displayed, a line of menus

across the top, a diagram showing the current meaning of the buttons, and a diagram of

the knobs showing their meaning. The use of the button box and knob box in R2 is the

same as that in MD.

Workstation Implementation of ROBOSIM 13

@

@

Mouse: R2 is designed to make extensive use of the mouse. The only time at which

the user uses the keyboard is when it would be more difficult to use the mouse. This

only occurs when requesting a file name for the robot, or environment. At all other

times, input is received from the mouse, the button box, or the knob box. To select

a menu move the mouse's cursor until the desired menu heading is highlighted. Now,

press either of the mouse's buttons and hold it. The menu will appear below. While

holding the button down, move the cursor down the menu until the desired menu

entry is highlighted; then release the button. If (before releasing the button) you

decide that the wrong menu has been selected, move the cursor out of the menu and

release the button. If you have already selected a menu item, most functions provide

a means to cancel them with no effects.

Numeric input window: Many functions make use of this window. It consists of

the numbers 0-9, a decimal point, a minus sign, CANCEL, END, and a set of param-

eters (such as RADIUS and HEIGHT for a cylinder, or X,Y, and Z for translate).

When invoked, all parameters are initialized to zero. However, all objects that are

made must have positive values. To select a parameter move the mouse cursor over

the desired parameter and press the left button on the mouse. Then use the mouse to

enter the desired value. If you make a mistake, simply press the parameter "button"

again, which will set the parameter to zero and allow you to reenter that parameter.

When finished entering parameters, select END. If all is well, the command will be

executed. If at any point you decide to abort this command, then press the CANCEL
button in the window.

Quit menu:

_ Exits from the program.

IRestart:l Deletes the current model from memory, but does not exit the program.

Make object menu:

Uses the numeric input window (described above). This command has three

parameters: x, y, and z. These three parameters are the dimensions of the box

along the three coordinate axes.

ICY linder: I Uses the numeric input window (described above). This command has
I

two parameters: RADIUS and HEIGHT. The cylinder is created with height
I

along the z-axis.

ICone." I Uses the numeric input window (described above). This command has two

parameters: RADIUS and HEIGHT.

[T uncated cone:] Uses the numeric input window (described above). This

command has three parameters: UPPER RADIUS, LOWER RADIUS, and

HEIGHT.

Workstation Implementation of ROBOSIM 14

[Sphere:] Uses the numeric input window (described above). This command has

one parameter, the RADIUS of the sphere.

Special surface: [h This command is used for creating custom objects. You do this

by first creating a polygon and then extruding or revolving it to create a solid

object. The right button selects the starting point. The left button draws a line.

To adjust the scale push the scale button, and enter a value at least two times

the amount of your largest coordinate. The resolution is useful for specifying

the smallest unit that will be differentiated. If every point is a multiple of five,

then set the resolution to five. (Special note: you must define the polygon in a

counterclockwise direction for extrude and clockwise for revolve.) Warning: due

to implementation constraints in the simulator's collision detection algorithm,

all polygons must be convex, at this time no correction or detection of concave

polygons is made, so it is the responsibility of the user to provide this check.

[Clone:] Allows the copying of an object. This is especially useful for copying the

custom designed objects since they require the most work. After selecting clone,

select the object to be cloned, with the mouse.

• Manip object menu:

[Translate:] Uses numeric input window (see description above). This command has

x, y, z, and HOME for parameters. Translations are relative (i.e. they occur

relative to the current position). To return an object to its home position, press

HOME, "1", and END.

[Rotate absolute:[Uses numeric input window. However, the x,y, and z here rep-

resent rotations around the corresponding axes. Rotations are absolute, not

additive. If you specify a rotation on an object, and then later another rota-

tion, the first rotation is lost and the new rotation is from the objects' home
position.

[Rotate relative:] Same as rotate above, except that these rotations are from the

current position.

[Delete:] Waits for you to select an object for deletion. Use the mouse to select the

object. Pressing the left button of the mouse while not on an object cancels
this command.

[Attach:] Lets one object be attached to another object. First, use the mouse to

select the base object, then select the polygon of the base object where the

attachment is to be. Then, select the object to be attached and finally the

polygon of the attached object. This command will attach the two objects

selected such that the two polygons selected line up. This attachment creates

a hierarchy such that the movement of the base object occurs to the attached

object, but a movement of the attached object will not affect the base object.

The new home position of the attached object is its position as attached to the

Worksfation Implementation of ROBOSIM 15

base object. Once an object is attached it can not be unattached. The object

must be deleted and made again.

[Resize:] Lets an object be resized. It is especially useful along with the attach

function. If several objects are created and attached together, then any of them

can be resized and the relationship between them will be maintained. After

selecting resize, the object to be resized is selected with the mouse. Then a

window identical to the one used to create it appears. Enter the new dimensions,

select END and the object will be resized.

• Links menu:

[Revolute joint l[Prismatic joint _ [Fixed joint:] These three commands create
a joint of the corresponding type. After selecting an entry the user is prompted

to select whether it is to be an i-joint or an i+l-joint. An i-joint is the place of

attachment to the previous link, and an i+l-joint is the place of attachment to

the next link.

]Rotate [, [Rranslate _ [Relete], [Attach:J These commands operate just like the

ones in the "Manip object" menu. The reason to have separate commands for

joints is that it is difficult to select them on the screen with the mouse.

[Check joints for validity:[This command checks the relationship between the i
and the i+l joint to make sure that it follows the Denavit-Hartenberg conven-

tion, as required by ROBOSIM.

• File Management Menu: This menu provides three basic capabilities: save a

session, load a session, generate ROBOSIM code, and run MD.

lSave file:[This command saves the current model. The user is prompted as to

whether it is to be saved as an environment file, a link file, or to exit this com-

mand. Then the user is prompted for a robot name and then for an extension.

[Load file:[This command loads a previously saved model. The user is prompted

in the same way as save file above.

[Generate ROBOSIM File:] This command prompts first as to whether the file

to be generated is for a robot or environment. Then the name is asked for. The

ROBOSIM file is then generated, ROBOSIM is called and the file is executed.

Control is then passed back to R2. The robot or environment can now be viewed

by MD, if R2 is running on an hp98721 display.

This command executes the MD program. This allows the robot to be viewed

completely. Does not work with environment files presently. Also, can not be

executed on an hp300h.

• HP300 Menu: This menu implements some functions on the hp300h. Since this

machine does not have the button box or knob box it is necessary to implement them

this way.

Workstation Implementation of ROBOSIM 16

[Look From:] This command uses the numeric input window. Specify the X, Y,
and Z coordinates to look from. At least one must be non-zero.

]Look At:] This command uses the numeric input window. Specify the X, Y, and

Z coordinates to look at.

Although the interface gives the appearance of an object oriented structure, it is not

implemented in this manner. The basic structure in this program is an array of pointers.

Currently, this is set to a size limit of 100. This means that the most objects that can

be in one link is 100 primitives. However, this number can be set to anything and the

program recompiled. A better structure would be a linked list of objects that is dynamically

allocated. At present, however, this method has not been a problem. The actual C
structure declarations are shown below.

#define MAXOBS I00

#define MAXKIDS I0

typedef struct vertex

float x;

float y;

float z;

float md;

} vertextype;

typedef struct {

int s_p;

int d_o;

int d_p;

} childtype;

/*source polygon*/

/*destination object*/

/*destination polygon*/

typedef struct object {

char *name;

int type;

int vertices;

vertextype *model;

int custom_vertices;

float custom, extrude;

vertextype *custom_model;

float size [5];

float amat [4] [4] ;

float ref [4] [4] ;

int display_list;

childtype kids[MAXKIDS];

} objecttype;

Workstation Implementation of ROBOSIM 17

Whenever an object is created, enough memory for a structure of type objecttype is

allocated and the pointer to this memory is stored -in the array. All information relating to
a particular object is stored in this structure. The first element in this structure is the name

of the object. This name is actually the ROBOSIM command that is used to generate this

object (i.e. BOX, R-JOINT-I). The name also directly corresponds to the next element:

the type. The type is an integer that represents the ROBOSIM command. The variable

'vertices' is the number of points in the model. The variable 'model' is a pointer to the

list of vertices that describe the graphic model. The custom_vertices is the number of

points in the polygon that is used to generate a custom surface (REV-SURFACE and

EXTRUDE-SURFACE). Custom_extrude is used in an extrude-surface object; it is the

amount the object is extruded. The custom_model is a pointer to the polygon that is

used in a custom surface. The 'size' array is an array of parameters that can be used as

the arguments to primitive calls. For instance, if the object is a box, then the first three

elements of 'size' will be used to store the x,y, and z dimensions. The 'amat' variable is a

matrix representing a transformation (rotation and translation) on the object. The 'ref'

variable is also a transformation, but it is used to define the home position of the object.

The display_list variable is an integer that is the descriptor of the display_list in

which this object is stored. The display_list is a set of graphics functions that when

traversed will result in the graphic object being displayed. The 'kids' array is an array

describing the children of an object. One object becomes another object's child when the

child object is attached to the parent object. Currently, the maximum number of children

one object can have is ten. However, this value can be changed. Each child is described

by three integers. The first, s_p or source polygon is the number of the polygon of the

parent where the child is attached. The d_o or destination object is the array index of the

object that is attached. The d_p or destination polygon is the polygon of the child object

that is attached to the parent.

After an object is selected from the menus and the parameters have been entered, the

object is created. The FORTRAN code that generates the primitives in ROBOSIM is also

used in R2. The use of the same code ensures that what is seen in the editor is the same

as what will be by ROBOSIM. The FORTRAN routines store the vector lists in an array

that is passed to them. After getting this information, the editor stores it in the structure

allocated for the object and in a slightly different form in a display list. The other variables

in the structure are filled out, the transformation matrices are set to identity, and a call

to the newly created display list is inserted into the root display list. Now, the next time

the display_list is traversed the object will be displayed.

Once an object has been created (i.e. an instance is made of the object), 'messages'

can be sent to it. From the user's point of view, this is what is done. However, the

implementation is different. The object is selected by picking it with the mouse. R2

waits for a mouse button to be pressed and then reads the (x,y) location of the mouse.

These coordinates are then used by Starbase to determine what primitive is in that area.

Starbase returns the display list number, a label number (if any), and the offset from the

label. With this information, R2 can decide which object and polygon have been selected.

l¥orkstation Implementation of ROBOSIM 18

Translations and rotations result in changes to the transformation matrix: 'amat'. A

matrix representing the appropriate translation or rotation is made and then multiplied

by 'amat'. The result is put back into 'amat'. The new 'amat' also replaces the old matrix

in the display list.

Attaching an object to another object is a complex procedure. First the object to

be attached (child object) is selected and then the polygon attachment point is selected.

The same is done for the base object. R2 then knows the two objects and the polygon

faces where they are to be attached. The center points of the polygons are computed

along with the normals to the polygons. Next, the normal direction for each polygon is

set to the 'Z' axis. Vectors for the 'X' and 'Y' axes must also be constructed for each

polygon. Two matrices are created that represent the positions and orientations for the

point of attachment. The inverse of the matrix for the base object is multiplied by the

matrix for the child object. This yields a matrix which describes the transformation of the

child object in the base object's coordinate frame. This is the transformation on the child

object necessary to line up the attach points. This matrix is stored in the child object's

'ref' matrix. Also, the child object's 'amat' is set to identity. This cancels any rotations or

translations on the child object and forces the two objects to line up as specified. Rotations

and translations can be done on a child object but will now be relative to the base object.

The base object's 'kids' array is updated to show that the attaching object is now a child

of the base object. The 'ref' matrix is put in the display list for the child object and a call

to the child's display list is put at the end of the parent (base) object's display list.

Deleting an object would be a simple procedure were it not for the complexity intro-

duced by attachments. The simplest method of handling this is deleting all children of an

object that is deleted. However, this is not desirable. Therefore, when an object is deleted,

all of its children are unattached and restored to normal status. One problem exists: child

objects positions are defined by matrices that are relative to the parent object's position.

Therefore, the child object's 'ref' matrix is not set back to identity, but is instead multi-

plied by the product of its parent's 'ref' and 'amat' matrices. This results in the object

not moving from its current position in the world. One can think of this as a virtual object

(invisible object) existing where the old parent object existed. This virtual object provides

invisible support to the child objects, preventing them from collapsing inward.

Resizing an object is another procedure that would be simple if one did not have to

deal with attached objects. After an object has been picked to be resized and the new

parameters have been entered, a completely new object is created. If it is a child object,

then its parent is looked for. The information regarding attachment points is stored in

the parent. The polygons are the same as before except that the dimensions are different.

New attachment points are calculated based on the new coordinates of the new object and

the 'ref' matrix is calculated. The 'kids' array of the parent is modified to point to the

new object and the old object is removed. If the resized object is itself a parent then the

old object's 'kids' array is copied to the new object and all of the 'ref' matrices of the child

objects are recalculated. Also, all references in display lists to the old object are changed

to the new object and calls to any children are placed in the new display list. The old

Workstation Implementation of ROBOSIM 19

object's display list is removed and the memory allocated to the object is freed.

When the link (or other structure) is complete, it is saved in a form able to be read by

R2. R2 can not take ROBOSIM code and create editor structures from that. Therefore,

one must save any files that might possibly be edited again. After all the links of a robot

have been edited, ROBOSIM code can be generated. Currently, the editor is set up in

such a way that after generating the ROBOSIM code, ROBOSIM is automatically called

and the appropriate filename passed to it. ROBOSIM then generates the link files for the

robot. If the user is on a terminal capable of using MD, then MD is automatically executed

with the robot name passed to it. In this manner, it is much quicker and more flexible to

use the editor, since the user does not have to exit the editor, run ROBOSIM, and then

run MD.

R2 generates ROBOSIM code in a fairly straightforward, though not necessarily intu-

itive (especially when looking at the ROBOSIM code), way. The method used resulted

from the difficulties involved in creating more "readable" ROBOSIM code. One method

would have required a breadth-first traversal of the editor's hierarchical structures starting

at the deepest level of the tree (the thickest part). Another method would have required

more registers than ROBOSIM has if there were more than four child objects to any object.

The method used can be thought of as resolving the hierarchical structure dependencies

into a simple list. Remember that the position and orientation of an object affects all of

its children objects by the fact that the children's position and orientation are described

in the coordinate frame of the parent. All that has to be done is multiply all of the trans-

formations down the tree and get one absolute transformation for each object. Then, the

first object is created, moved and rotated, and then stored in register B. Each additional

object is handled the same way except that register B is added to it and the result stored in

register B. Once all the objects in a link have been processed, a "STORE-LINK" command

is added. Each link is processed the same way until no more links are left.

Pictures 3.1 through 3.5 show two links of a robot being built. First, a cylinder is

created and moved to one side. Then, a custom object is created. Next, the custom object

is attached to the cylinder. The final steps for this link are a fixed joint attached to the base

of the cylinder and a revolute joint attached to the custom object. Then, the link is saved.

Another link, a simple box, is created. The input and output joints are made and attached

to the link. Then, that link is saved. After these links have been saved, ROBOSIM code

is generated for them and passed to ROBOSIM. The output from ROBOSIM can be seen,

also. Now, the files describing these two links have been created and they can be looked

at with MD. The ROBOSIM code generated for the base link (LOC link) is listed in Table

1. The structure of the link file generated by ROBOSIM is shown in Table 2.

li}_rksta tion Implem_,n ta titan of R OBOSL'_f 20

Figure 3.1" Creating a custonl object

Ok! _',U,'__ I-L"I'-',,-:E

COLOR PHOTOGRAPH

21

Fie;llrt_, 3.2: Cylind_'r and custom object before an,t after attachment

........ ;._,. _ ,OAOE

lI'orkstation hupI,mcut_tion _,£ ROBOSIM 22

Fi_u'e 3.3: Base link with joints being, ch('cked

._r'-_ C_ "_ .._ " *."_I_D H

Workstation hnt)lomon ta ti(m of R OBOSI.'_I 23

Figure 3.4: B;_so link being savod and compih,d 1)v ROBOSIM

I_I,brkstationImplementation of ROBOSIM 24

Figure 3.5: First link being saved and compiled by ROBOSIM

Workstation Implement, ation of ROBOSIM 25

LOOK-FROM X=-lO0., Y=IO0., Z=45.

LOOK-AT X=O., Y=O., Z=8.

CLEAR

STOKEB

R-JOINT-I÷1

ROTATE X=-45.000

ROTATE Z=90.O00

TRANSLATE X=-5.000, Y=-30.O00, Z=55.000

ADD B

STOREB

CLEAR

MOVE X=-lO.O00, Y=-IO.O00, Z=O.O00

DRAW X=-lO.O00, Y=IO.O00, Z=O.O00

DRAW X=15.000, Y=IO.O00, Z=O.O00

DRAW X=25.000, Y=O.O00, Z=O.O00

DRAW X=15.000, Y=-IO.O00, Z=O.O00

DRAW X=-lO.O00, Y=-IO.O00, Z=O.O00

EXTRUDE-SURFACE Z=IO.O00

ROTATE X=-90.O00

ROTATE Y=-90.O00

TRANSLATE X=O.O00, Y=-30.O00, Z=35.000

ADD B

STORE B

CLEAR

F-JOINT-I

TRANSLATE X=O.O00, Y=-30.O00, Z=-25.000

ADD B

STOKE B

CLEAR

CYLINDER R=iO.O00, H=50.O00

TRANSLATE X=O.O00, Y=-30.O00, Z=O.O00

ADD B

STOKE B

CLEAR

LOAD B

STORE-LINK C.LOC

VIEW

END

Table 1. ROBOSIM code generated by R2

Workstation Implementation of ROBOSIM 26

Row Col 1 Col 2 Col 3 Col 4

THETA I DZ I DA I ALPHA

JAI [JA2 [JTYPE1 [JTYPE2

AINERT (4X4)

AJNT-I (4X4)

AJNT-I+I (4X4)

AMAT (4X4)

NVEC I UNUSED [UNUSED [UNUSED

Xl [Yl [Zl [D1

X2 I Y2 [Z2 [D2

:

:

2

3

7

11

15

19

20

21

NVEC+19 I XNVEC I YNVEC I ZNVEC I DNVEC I

Variable Definitions:

THETA

DZ

DA

ALPHA

JAI,JA2

JTYPE-I,I+I

AINEKT

AJNT-I,I+I

AMAT

NVEC

Xi,Yi,Zi

Di

= Denavit-Hartenberg parameter

= Denavit-Hartenberg parameter

= Denavit-Hartenberg parameter

= Denavit-Hartenberg parameter

= joint defined flag

= joint type -> Kevolute,Prismatic,Fixed

= generalized link inertia

= transforms of input and output frames

= link's A-matrix

= number of vectors in list

= x,y, and z component of vector

= move or draw vector

Table 2. Structure of Link File Created by ROBOSIM

Workstation Implementation of ROBOSIM 27

3.4 Simulation Library and Environment

The simulation library and environment provides methods to access the data structures

created by ROBOSIM. The robots and other objects are specified and loaded into memory.

These structures remain resident in memory while the simulation is running. The library

provides an interface to these structures so that the user does not have to understand what

is happening at that level. The library provides higher level facilities much like an actual

robot programming language.

The simulation package allows one to use the robots that have been designed. The

package consists of a library of C functions that operate on the files created by ROBOSIM.

Although this package is far from complete, it allows simple simulations to be run. Also,

it provides a framework in which to test the major components for the simulator: collision

detection and dynamics. Having the simulator be a library of C routines allows more

flexible methods for running simulations. Very specific and efficient simulations can be

written in C and which call the simulation functions directly. However, even at this level,

much of the internal data structures is hidden from the user. This level of programming

roughly corresponds to programming a robot in its programming language. For instance,

one can tell a robot to move along a straight line or move a particular joint. A complete

reference of simulation functions available can be found in Appendix B. Using these same

routines a very flexible, user-friendly interface can be built up, allowing an interactive way

to do simulations that are not too complicated, or that do not require great speed.

ROBOSIM provides most of the information required by the simulator by way of the

files it creates. However, some information is not directly provided, but it can be deter-

mined from what is there. This involves the information required by the collision detection

algorithm. ROBOSIM provides the Denavit-Hartenburg parameters, the A matrix, the

pseudo-inertia matrix, and a list of points which describe the physical structure of the

robot. The internal data structure also includes areas that are not currently used, but

will be at a later time. These include minimum and maximum joint angles, velocities, and

accelerations. The structure also includes information related to Starbase graphics. The

actual C structure declarations used can be found in Appendix A. The simulation package

acts as intermediary between the user and the internal representation.

The simulation program that the user writes can turn on collision detection, request

solutions to inverse kinematics problems, and display results graphically. The user can

use the general numerical Jacobian method for inverse kinematics or provide an exact

solution for his robot. The user simply passes the address of the function to the simulator,

and the simulator will then use that function when solving inverse kinematics for that

robot. A proposed extension to the simulator will allow the recognition of the twenty-four

possible robot configurations for which exact solutions exist. The exact solutions to these

configurations would then be used instead of a numerical method, freeing the user from

having to solve and code it himself. A good use of the simulation system can be found

in a later case study section. This case study uses most of the features of the simulation

system, as well as R2.

Workstation Implementation of ROBOSIM 28

The simulation library's commands correspond to real robot programming commands

found in many robot languages. Interfaces to many different robot la.nguagues are planned.

This will allow actual robots to be simulated, and then have a verified program downloaded

to the robot. Additionally, the simulation could be run in parallel with the robot, with

a planner or some other type of higher-level process sending the same commands to the

simulation as well as to the actual robot. This can be used for verification, or even more

importantly as part of a feedback loop to the planner. This will allow the planner to receive

information from the simulation that it can not get from the actual robot. For instance,

the simulation could provide forces and torques if the robot does not have sensors for

that. Also, the planner could check out a plan of action on the simulation before actually

driving the robot. This would let the simulation check for collisions or other dangers

without risking the real robot.

3.5 Inverse Kinematics

The current default method for solving the inverse kinematics problem is the Newton-

Raphson method. This method is an iterative method which uses the Jacobian of a robot.

It is limited to six degree of freedom arms and has many other problems. The Jacobian is

a six by six matrix that relates differential changes in joint angles to differential changes

in world coordinate space. In other words, if you take the vector of joint velocities and

premultiply it by the Jacobian the result will be the velocities of the end effector in coor-

dinate space. Now, if you invert the Jacobian matrix, then you have a matrix that relates

differential changes in coordinate space to differential changes in joint angles. Now, if the

robot end effector is at a certain place and you want to know what joint variables would

put it there then do the following procedure.

First, record the current joint angles. Then, compute the Jacobian and invert it. Now,

subtrace the current position of the robot in coordinate space from the desired location

in coordinate space. Multiply the inverse Jacobian by this difference. This yields a set of

differences in the joint angles. Add this set of differences to the joint angles. Compute the

new position of the end effector. Iterate this procedure until the error is acceptable low.

There are many problems with this procedure. First, due to singularities in the Jaco-

bian, the method often does not converge. Second, when it does converge, you get only one

possible solution and there is no way to get the others. Third, it is very slow. However,

there are some robot configurations in which there is no exact solution, and therefore this

is the only general way.

The implementation used does not yield very good results. However, it is faster than

that used in the original ROBOSIM. This probably results from the use of LU decompo-

sition instead of actually computing the inverse of the Jacobian. For example, if you axe

trying to solve the matrix equation (Y = JX) for X, one way would be to invert J and

premultiply both sides by that. However, there is a faster way to solve this. J can be

expressed as the product of two matrices, an upper diagonal matrix and a lower diagonal

matrix. With J in this form, X can be solved by back substitution.

Workstation Implementation of ROBOSIM 29

The best way to solve the inverse kinematics problem is to provide the exact solution.

Although this is usually difficult, there are only 24 distinct configurations. This means

that if a robot has an exact solution, its inverse solution can be expressed by one set

of equations out of a possible 24. Currently, only one set of equations is implemented:

the one corresponding to the PUMA 560. However, it is in a general form, in which six

pararneters (the lengths of the links) can vary. This method also allows one to get all

possible solutions to the problem. In this way, additional constraints can be checked for,

such as limitations of joints and checking different solutions to find one that does not

collide with itself or other objects. This method is also faster by two orders of magnitude.

Also, most commercially available robots have configurations that have exact solutions. It

is not possible to run a simulation in real time using the numerical method, at least not

without a floating point accelerator.

The only other method involves solving for five of the six joint angles analytically

and using the Newton-Raphson method on one joint. This method will work on some

configurations that do not have exact solutions. The usefulness of the method is better,

yielding more solutions than the full Newton-Raphson method. In addition, the numerical

part of the algorithm is not as sensitive to singularities, since it involves only one equation.

This algorithm is not currently provided in the simulation, but the user could provide his

own.

3.6 Collision Detection

Collision detection is very important in simulation of robots. One usually wants to know

if the robot has collided with its environment or with itself. The following discussion

does not delve into the theory behind the methods used, nor does it give an overview of

collision detection. For a complete discussion of collision detection methods see Waiter's

dissertation from Cornell. The collision detection algorithm implemented here is very

similar to the POCODA (POlygon COllision Detection Algorithm) algorithm given by

Walter. The implementation used is given with special emphasis on those extensions to

POCODA.

The algorithm used can be broken down into several subalgorithms. These will be

discussed from lowest level to highest level. The assumptions used here is that all objects

are defined by convex planar polygons. The problems involved in collision detection are

as follows. Given a polygon and a point in the plane of the polygon determine whether

that point is inside of the polygon. Given a polygon and a line segment determine whether

the line segment crosses the plane of the polygon. Given two polygons determine whether

they intersect. Given two objects determine whether they intersect. Given two bounding

volumes around two objects determine whether they overlap.

The one equation to keep in mind throughout this discussion is the plane normal form

of the plane equation.

¢(P) = N.P + nd (3.1)

Workstation Implementation of ROBOSIM 30

Where N is normal to the plane, P is the point, and nd is the distance from plane to

origin.

The plane described by this equation is the set of points P such that ¢(P) is zero.

Also, given N, nd, and a point P, the residue (¢) is zero if P is in the plane, positive if P

is above the plane, and negative if P is below the plane.

The point-in-polygon problem is the most time-consuming operation. The method used

to solve this problem is the reason why the polygons must be convex. The algorithm is to

follow the polygon's edges around the polygon checking to see which side of each edge the

point is on. If the point is to the same side of each edge then that point is inside of the

polygon. This is checked by substituting the point into each edge's penalty function. The

penalty function is a plane equation such that the edge lies in the plane and the plane is

perpendicular to the plane of the polygon. The penalty function is calculated once for each

edge and stored in the internal structure. See Appendix A for the C simulation structure.

pen(P) = M. P +md

M = (N x E)IIEI[

md= -M. Ple

(3.2)

(3.3)

(3.4)

M is the normal vector to the penalty plane; it is the cross product of the normal to

the polygon plane and the directed edge normalized with respect to the directed edge. md

is the distance of the penalty plane from the origin. This penalty function can now be

used to determine which side of an edge a point is on.

The algorithm for determining if a line segment crosses the plane of a polygon should

be obvious from the above discussion. The two endpoints of the line segment are both

substituted into the equation of the plane in which the polygon lies. If the residues of the

two points are the same sign then both points lie on one side of the plane. Therefore, the

line segment did not cross the plane. If, however, the residues have different signs, then

the point at which the line segment crosses the plane must be determined so as to use it in

the point-in-polygon algorithm. Given two points P1 and P2 which axe the endpoints of

a line segment and ¢(P1) and ¢(P2) which axe the residues of P1 and P2 in the polygon

plane, then the point along the line segment that intersects the polygon plane is Pc,

Pc = P1 + (P2- P1). ¢(P1)(C(P1) - ¢(P2)) (3.5)

Each object in a simulation is composed of polygons, but due to speed and efficiency

requirements the above tests would be prohibitive. Therefore, some simpler tests axe

required which can quickly eliminate some objects from the more exhaustive tests. The

method used is to perform tests on bounding boxes of the objects. A bounding box is

described by a point and a vector. The point is the center of the box, and the vector is

the half-diagonal vector of the box (i.e. it points from the center of the box to a corner).

These values are determined by first determining the maximum and minimum values of

the object along the x, y, and z axes. The center is calculated by averaging the maximum

and minimum values along each axis. The half-diagonal vector is calculated by taking half

Workstation Implementation of ROBOSIM 31

of the difference between the maximum and minimum along each axis. For instance, along
the X axis:

Cx = (Xmax + Xmin)/2 (3.6)

Dx = (Xmax - Xmin)/2 (3.7)

Now, two bounding boxes overlap if the distances between the centers along every axis is

less than the sum of the half-diagonal components along the corresponding axes. However,

the two bounding boxes must be defined in the same coordinate frame. Typically, each

object is defined in its own coordinate frame and has a transformation matrix describing the

position and orientation of the object in the world coordinate frame. Therefore, a method

is needed to transform a bounding box from one frame to the other. Given two bounding

boxes, B1 -- (C1, D1) and B2 -- (C2,D2), and two transformations T1 and T2 which

are 4x4 matrices describing position and orientation of boxes B1 and B2, respectively, let

C1,C2 and D1,D2 be the center and half-diagonal vector of B1 in coordinate frame 2.

C1,2- [C1][T1]([T2]- 1) (3.s)

D1,2 = DI@[Tll([T2]- 1) (3.9)

where @ is the dilation product, an operation between two matrices which can be expressed

as the product of two matrices whose elements have all been changed to their absolute
values.

In order to test for bounding box overlap given two boxes, one first has to express B1 in

coordinate frame 2 and check for an overlap. Then convert B2 to coordinate frame 1 and

check for an overlap. Only if both checks indicate an overlap is there one. If an overlap is

indicated then further checks have to be made to determine if there is a collision.

Once a possible collision is indicated by overlap of bounding boxes, more exhaustive

tests have to be performed. First, all points in one object must be transformed to the

other object's coordinate frame. This can be done using Eq3.8 above where C1 is a point

in object 1. Once this is done, a first approach would be to check every edge in each object

against every polygon in the other object. However, there are some ways to reduce the

number of edges which must be checked. First, each edge in object 1 is checked against

the bounding box of object 2. Only if the edge falls within the bounding box could it

intersect the object. Each edge that could intersect a polygon is saved in the reduced edge

array. Now, each edge in the reduced edge array is checked against the polygons in object

2. However, each polygon from object 2 is first checked to see if the plane it lies in could

intersect the bounding box of object 1. If it does not, there is no need to check edges

against it. Finally, each possible edge is checked against each possible polygon, using the

methods described above, to determine if a collision exists. If not, then all points of object

2 are transformed to the frame of object 1 and the procedure repeated. The following

summary is from Walter's thesis.

• Compare the bounding boxes of each object.

Workstation Implementation of ROBOSIM 32

(a) If the bounding boxes overlap then the likelihood of a collision is high and further

cheeks are required, and the procedure continued.

(b) Otherwise the two objects cannot possibly collide. They may be declared

collison-free, and the procedure is exited.

The objects are transformed to a common reference frame by tranforming the points

of j into the reference frame of k. The new object is referred to as (j, k).

Edges in (j, k) are compared with the bounding box of k.

(a) If an edge intersects the bounding box it is retained for further tests by inserting

it into the reduced edge array.

(b) Otherwise the edge is excluded from further tests.

Check each polygon in k.

(a) Check whether the polygon plane intersects with the bounding box of (j, k). It

means comparing the polygon against all the reduced edges in (j, k).

A. If the polygon intersects with an edge then a collision has occurred, and the

procedure is exited with a collision condition.

B. Otherwise, continue until all edges are considered.

Otherwise, the polygon cannot possibly be a source of collision, and is excluded

from further tests between the two objects.

(b)

• Evaluate progress.

(a) If this is the first time to this step then, interchange the roles of j and k and

repeat all steps after (2), since a collision is still possible, although undetected

this far.

(b) Otherwise, the two objects do not collide. They may be declared collision-free,

and the procedure exited.

This algorithm is the one used in the simulation library and environment with one

difference. At step 3, Walter checks every edge in (j, k) against the bounding box of k. A

much simpler first check is to check the plane of the polygon that contains the edge against

the bounding box first. If that polygon does not intersect the box, then all the edges of

that polygon are excluded. This is a much faster check than checking an edge against a

box. This is similar to what is done for the k object in step 4.

ROBOSIM does not directly generate all the information required for collision detec-

tion. However, it can be calculated from what is provided, namely the vector list. The

vector list is a list of points that define the polygons of the object. This vector list is split

into separate polygons as it is read from a file. Then the normal and normal distance

for each polygon is calculated and stored. Next, the penalty function for each edge is

Workstation Implementation of ROBOSIM 33

calculated and stored. As the vector list is read in, the maximum and minimum x, y, and

z values are saved and used to calculate the bounding box. The internal data structure

now contains all of the information necessary for collision detection.

The use of this algorithm requires some special considerations when used with robots.

The technique used employs a bounding box around each object in the environment, a

bounding box around each link of each robot, and a bounding box around each robot.

The bounding boxes around each object and each link are computed at load time, but the

bounding boxes around robots must be computed as needed. This is because the bounding

boxes around robots change as the joint angles in the robots change. Whenever a collision

is checked for, bounding boxes are created around the robots. They are calculated by using

the bounding boxes around the links. The minimum and maximum extents along the x,

y, and z axes of the bounding boxes around the links are computed. Then a bounding box

around all these bounding boxes is computed from the minimum and maximum extents.

The purpose for bounding boxes around robots is that if there is more than one robot,

even bounding box checks become expensive. If there are two robots, each with nine links

(6 movable and 3 fixed), 81 bounding box checks would be required every time. And if

there were three robots, 729 bounding box checks would be required. With three robots,

and therefore three bounding boxes, only three bounding box checks are required. If there

is a collision between two bounding boxes, only the two robots need be checked.

Previously, there was a transformation matrix associated with each link that described

the coordinate frame of that link with the previous link. This is not adequate for collision

detection, however. This matrix can be obtained by multiplying all of the matrices of

the previous links together, yielding a transformation of the current link in the world

coordinate frame. It is much simpler, and faster, to calculate this matrix for each link

whenever joint variables are changed in the robot rather than waiting until needed by

collision detection. This is especially true since collision detection checks are made from

the end effector inward, as a collision is more likely with the end effector. Whenever a

joint variable in a robot is changed by a library function, the transformation matrix of the

link in the previous link's frame as well as the world frame is calculated and stored in the

link's structure. Then, it is used by the collision detection algorithm as needed.

Another problem that requires special treatment is collisions involving the robot with

itself. This is especially difficult when one considers that the design of the robot may

include overlap of adjacent links. If this is the case, then if links of the robot are checked

with other links of the same robot, then collisions might be seen that aren't really valid.

Therefore, collisions are not checked for against adjacent links. The simulator has internal

provisions for joint constraints. Therefore, any possible collision could be provided for by

limiting the joint angles. However, given legal joint values, it is possible for non-adjacent

links to collide. Therefore, collision detection of the robot with itself must be made. Given

a nine link robot, 28 bounding box checks must be made to ensure no collisions with itself.

However, this self-collision detection may be controlled separately (i.e. it can be turned

on and off independently of the other collision detection), since the user may not require

these tests.

Workstation Implementation of ROBOSIM 34

Since many objects and robots may be loaded before they are actually used in the

simulation, the collision detection uses the list that is created by the USE command. The

USE command adds its argument to a linked list of objects, and inserts a call to it in the

display list. Therefore, it will be displayed when the display list is traversed. Also, the

collision detection uses the linked list of objects to check for collisions. If an object is not

in use, the collision detection does not waste time checking it.

Once collision detection is turned on, checks for collisions are made any time the library

functions are used to move a robot. If there is a collision then a collision structure is filled

out. This structure returns pointers to the objects and link numbers if the objects are

robots. The library functions pertaining to collision detection are included in Appendix

B.

The collision detection algorithm has only two weak points. It does not handle concave

polygons, and it will not signal a collision if one object is completely inside of another.

The stipulation concerning concave polygons is not serious. ROBOSIM does not generate

concave polygons unless they are the result of an custom object. Although R2 does not

check for concave polygons, this feature could be implemented. In fact, algorithms exist to

split concave polygons into convex polygons. Either of these features could be implemented

fairly simply. The problem of not detecting a collision if one object is completely inside

another derives from the fact the algorithm used is a polygonal collision detection algorithm

and not a solid object one. However, assuming two objects start off outside of each other

and movements are sufficiently small, then this should not prove to be a problem. This

condition also prevents the ability of one object to pass through another (i.e. a movement

is large enough that two objects do not overlap at any point). This algorithm does not

detect collisions in the volume swept by an object moving between positions with another

object, but rather only overlap of the objects at the starting and ending positions. But, if

the distance between the positions is smaller than the smallest object, then there should

be no problems.

The collision detection has been implemented very effectively. The low level collision

routines require transforming points in one coordinate frame to the other. This requires

multiplying all points by a transformation matrix. The Starbase graphics package provides

routines to do this, as well as to multiply 4x4 matrices together. When there is a graphics

accelerator in the system, Starbase uses it to do the calculations. This allows matrix

multiplication as well as transformation of points to be done in hardware, which is much

faster than in software.

3.7 Example: Surgical Positioner

Everything described up to this point has been tested, and is in use. R2 and the simulation

package are being used presently to aid in designing a kinematic surgical positioner. Its

application would be specifically for brain surgery. The idea behind it is this: the robot

would not be capable of motion on its own. It would be attached to a surgical collar,

and after calibration would be positioned by the surgeon, with joint encoders sending the

Workstation Implementation of ROBOSIM 35

values of the joint angles to a computer. The computer would show the position of the

robot superimposed on a CAT scan. In this way, a su.rgeon can quickly determine points

of entry. Currently, this is accomplished by precomputing where the points would be and

then determining them using the collar as a reference. Having a way to immediately see

what the positions are would prove to be much more flexible. Additionally, a hollow tube

could be attached to the end effector. With this, the robot could maintain a particular

orientation while the surgeon takes a biopsy.

Current research is to determine whether a robot of sufficient accuracy can be built.

ROBOSIM provides an excellent test bed to perform this development. R2 has been used

to design the arm and specify the dimensions of the links. A basic configuration similar

to that of the PUMA 560 has been used. Therefore, an exact inverse kinematics solution

exists and is used. The simulation library and environment is used to test the arm. The

tests include ability to reach all the required points on the head (without passing through

it). The inverse kinematics equations generate eight different solutions. These solutions

are checked using the collision detection algorithm to ensure that there exists at least one

which will reach the desired position without touching the head.

An additional requirement is that the positional accuracy of this robot be small. How-

ever, the size and cost are also important factors, so the smallest joint encoders would

be desirable. The relation of world positional accuracy to joint accuracy is fairly easy to

determine. Given a joint encoder of a certain number of bits, the accuracy is the range

divided by two to the number of bits. This gives an angular measure of the amount a joint

encoder could be off. This is used with the Jacobian to determine the maximum positional

error. The Jacobian relates differential changes in joint angles to differential changes in

world coordinates. The error in position caused by each joint is first determined. Then,

the sum of the errors is computed. This gives the maximum amount that the positioner

could be off. (It assumes each joint is off in the direction to give maximum error.)

Once a robot is generated, the simulation can run without the user. All data is saved

in a file for later analysis. The simulation can run without displaying any graphics, or the

user can watch it as the robot is put through its paces. The part of the simulation written

by the user is shown below. It is not a general type of simulation that would be applicable

to a wide variety of problems. However, it is sufficiently general in that it encapsulates

the requirements of the project, but it does so without being limiting. For instance, the

requirements are that it reach certain points on a head (cylinder) without any part of the

robot touching the head. The user cycles through the points that are required, and the

simulation sends back information concerning whether the robot specified can reach the

points without colliding with the head.

#include "sim.h"

#include <math.h>

#include <stdio.h>

#define TRUE 1

#define FALSE 0

Workstation Implementation of ROBOSIM 36

int i;

FILE *fopen(), *fpouti

int puma_inv();

sire()
{

ROBOT rl=0;

0BJ o1=0;

JOINT array;

float J[6][6];

float angle;

extern COLLISION S_C0;

char *filename="testout";

float m[4][4];

float CONV = M_PI/180.;

/*

* PRE does transformation along world axes

rl=GET_ROBOT("/users/robosim/source/manipulators/jo/models/T");

PRETRANSLATE(rl,25.,0.,0.);

USE(rl);

ol =

GET_OBJ("/users/robosim/source/manipulators/jo/models/HEAD.OBJ");

PRETRANSLATE(ol,0.,0.,0.);

USE(ol);

C_SWITCH(TRUE);

SET_INV(rl,puma_inv);

cover head in increments of Icm over the length and 5 degrees

from 75 to 295 output results to file testout

fpout = fopen(filename,"w");

set_joint_error();

for (i= -20; i<21; i++) {

for (angle=0.; angle<105.*C0NV; angle+=5.*C0NV) {

get_location(angle,m);

fprintf (fpout, "\n") ;

fprintf(fpout,"%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",

io[0],io[i],Io[2],io[3],io[4],ioIs]);

if(KINV(rl,m,array,TRUE)) {

Workstation Implementation of ROBOSIM 37

JACOB (array, J) ;

error(J) ;

if (!MOVEJI (rl, array, l)) {

printf("collision, y = _,d, angle = _,f\n",i,angle);

printf("link _,dkn",S_CO.LI) ;

}
}
else {

fprintf(fpout,"point did not converge\n") ;

printf("point did not converge\n");

}
}

}

fclose(fpout);

get_locat ion (j,m)

float j ;

float m[4] [4] ;

{

m[2][0] = -cos(j);
m[2] [2] = -sin(j);

m[2][l] = 0.;

m[O] [0] = m[O] [2] = 0.;

m[O][l] = I.;

cross (m[2] ,m[O] ,m[1], I.) ;

m[3] [0] : (float) -20.1* m[2][O];

m[3][2] = (float) -20.1. m[2][2];

m[3][I] = (float) i;

m[O][3] = m[l][3] = m[2][3] = 0.;

m[3][3] = i.;
return(1) ;

float NUM_BITS[] = { 12.0, 12.0, 12.0, 12.0, 12.0, 12.0};

float single_joint_error [6] ;

set_joint_error()

{

int i;

for (i=O; i<6; i++) {

single_joint_error[i] = 2.*M_PI/pow(2.0,NUM_BITS[i]);

Workstation Implementation of ROBOSIM 38

}
}

error(m)

float m[6] [6] ;

{

int i, j ;
float err[6] ;

for(i--O; i<6; i+÷) {

err[i] = 0.;

for(j=O; j<6;j++) {

err[i] += (float)fabs((double)m[i] [j] *

single_j oint_error [j]) ;

}
}
fprintf(fpout,"dX = 7.f dY = 7.f dZ = 7.f",err[O] ,err[1],err[2]);

fprintf(fpout," rX = 7.f rY = 7.f rZ = %f\n '° , err [3] , err [4] , err [5]) ;

fprintf(fpout,"distance error 7.fkn",

(float) sqrt((double)

err [0]*err [0]+err [I]*err [1]+err [2]*err [2]));

}

Currently, various configurations with twelve bit joint encoders are being investigated.

It appears that twelve bit encoders will provide the necessary accuracy. The use of R2 and

the ability to resize objects provide a simple means to quickly create a new configuration.

The generalness of the simulation library allows the same simulation to be used with no

modification. A detailed description of the simulation library commands is provided in

Appendix B.

3.8 Port to the Intergraph Workstation

To make ROBOSIM available on as many platforms as possible, we have ported the basic

ROBOSIM package and the simulation library to an Intergraph 3260 workstation. The

Intergraph 3260 workstation is the high-performance version of the 360 model. It is based

on the Clipper processor chip (which means it is code compatible with lower-grade models),

and runs the CLIX operating system (which is a derivative of ATT Unix System V). It

is e quipped with two graphics screens, which are suitable for applications requiring dual

displays. The configuration received by us has a large amount of main and secondary

memory, which makes it very appropriate for large-scale program development efforts.

The graphical programming interface is realized through various libraries which offer

many facilities, including line and polygon drawing, shading, etc. The capabilities of the

Workstation Implementation of ROBOSIM 39

libraries are compatible with those of the Starbase library on the HP machines. One

notable difference is the lack of display list libraries on Intergraph.

The basic ROBOSIM modeling environment and the simulation library were ported to

the Intergraph workstation. The porting involved two steps:

• the modification of the graphic library calls (because of the differences in the graphic

libraries), and

• the substitution of the Starbase display list calls with appropriate modules (because

of the lack of display list facilities).

The result of the port is a fully functional basic ROBOSIM package.

Chapter 4

Intelligent Graphic Modeling
Environment

The ROBOSIM package, together with the enhancements described in the previous chap-

ter, provides a powerful graphic tool for designing and simulating geometrical objects

(including robots, of course) using an engineering workstation. But the real power of this

approach can be utilized only by integrating the services of a graphic modeling toolkit

with knowledge-based techniques. This chapter describes the first results of the ongoing

research efforts to create such an integrated modeling environment.

First a critical review of the graphical modeling techniques of the basic ROBOSIM

package is given, followed by the description of the system design and implementational

considerations for an enhanced modeling and simulation package, called Agent, which was

created on top of the ROBOSIM package. The simulation package is accessible through

an object-oriented command interface, and it incorporates and extends the facilities of the

basic ROBOSIM code, as well as those of the simulation library described earlier. One

automation testbed facility (which also utilizes the MULTIGRAPH architecture) is the

Hierarchical Description Language, the subsequent sections discuss the features of this

declarative language, together with the interfacing techniques to the modeling environ-
ment.

4.1 Critique of the Basic Graphical Modeling Tech-

nique

The extensions to the ROBOSIM package described in the previous chapter greatly en-

hanced its capabilities in modeling different geometrical objects and systems. But we

think that a graphics modeling environment should provide some additional features in

order to fully utilize the potential of knowledge-based techniques in the graphic simulation

of geometric systems. These additional features are summarized below:

4O

Intelligent Graphic Modeling Environment 41

Need for separate representation of objects: Currently the ROBOSIM mod-

eling environment does not support the separate representation of different graphic

objects in its workspace. The display lists representing these objects are concate-

nated together every time a new object is added to the system. This makes the

modification of complex objects very difficult, because the whole ROBOSIM com-

mand sequence creating the complex object must be re-executed whenever one of its

parts is modified. This is especially a problem during the editing phase, since such

operations are quite frequently needed here. The solution would be to maintain these

objects separately - at least during the editing phase of the modeling. On the other

hand, concatenating together the parts of a complex solid object would speed up

the graphic simulation, so the desirable solution is to maintain both representation

forms and use the appropriate one for each step of the modeling process.

Need for more graphics objects in the workspace: A large graphics simulation

program typically contains several independently moving objects. The programming

model offered by ROBOSIM (graphic registers) limits the number of these objects

- i.e. the complexity of the systems which can be modeled with it. The desirable

solution is to allocate the graphic objects dynamically, which does not limit their

number. Then each of these independent objects could be controlled separately

during the simulation.

Multiple aspect object representation: Many of the enhancements to the RO-

BOSIM package (collision detection, dynamics, etc..), described in the previous chap-

ter are basically "add-on" packages to the original system, with separated data rep-

resentation schemes. The system design could be made much more understandable

if a central data base would be used, containing every aspect of each of the models

stored in it.

The next section of this chapter describes the system design and the implementational

considerations of the enhanced modeling package Agent.

4.2 System Design of the Graphic Simulation Envi-

ronment

The system design architecture of the Agent package can be seen in Figure 4.1. The
architecture is centered around a database which stores datastructures which contain in-

formation about:

• the geometrical properties of the entities of the world model,

• the part-whole relationships between the entities,

• the information necessary for displaying these entities (display lists),

Intelligen_ Graphic Modeling Environment 42

INVERSE

KINEMATICS

COLLISION

DETECTION

TRAJECTORY

GENERATION

I I
USER

ROBOSIM

INTERFACE

SHAPE GEN

PORTABLE

GRAPHICAL

INTERFACE

SCREEN

=====t>

Figure 4.1: Main functional components of the simulation environment

* the information necessary for the collision detection algorithm,

* the information necessary for the forward and inverse kinematics simulation of the

system (either in the form of data necessary for the default iterative methods, or in

the form of analytical equations if these are available), and

• the information necessary for the forward and inverse dynamic simulation of the

system.

Basically, the database contains all the information which was necessary to operate the

models in the enhanced ROBOSIM package described in the previous chapter, but in a

much better structured form. Unlike in ROBOSIM, where there was a limitation on the

number of objects which can be handled by the system (fixed number of graphics registers),

the objects in the database can be generated dynamically with no preset limit on their

number or complexity.

In many cases the objects in the database are complex structures built of either less

complex structures or elementary building blocks (like boxes, cylinders, spheres, etc..).

Frequently there are objects having the same structure but with different parameters of

their building blocks.

Structures (ie. robots) described in the ROBOSIM language can be instantiated in as

many copies as it is required. This is made possible by the database which can also store

Intelligent Graphic Modeling Environment 43

structural declarations of these complex objects which can be instantiated with the desired

parameters whenever a new entity has to be generated. This way we can avoid having to

build these objects from scratch.

The database is implemented as a set of data structures shared by the other active

components shown in Figure 4.1. These active components, are the functional blocks of

the system and they are based on the basic ROBOSIM package and the simulation library

described earlier.

These blocks and their functionalities are as follows:

• Object-oriented Command Interface: Communicates with the user, interprets

the user commands and builds and keeps track of the various objects.

Robosim Interface and Shape Generator: Reads in and interprets files written

using the (basic) Robosim language, and creates necessary objects using the Robosim

shape generator facilities.

Inverse kinematics: One of the basic robot simulation facilities. It solves the

inverse kinematics equations, while the simulation is running. There are facilities

for incorporating user-defined inverse kinematics routines (which solve the equations

using analytical formulas and are typically very fast).

• Collision detection: Checks for and detects collisions, as it was described earlier.

• Trajectory generator: Generates joint angles dynamically, using various tech-

niques (e.g. joint-interpolated motion, straight-line motion, etc.)

• Portable graphical interface: Interfaces the database to the graphical library (or

hardware) available on the computer.

In the next section we describe the command interface to the package.

4.3 Agent command interface

The purpose of the Agent package is to act as a robot simulation environment which can

receive commands from a user or from another program, for example an AI system's high-

level planner. It provides features for environment configuration, manipulator control, and

status reporting. The execution of the commands is performed in a graphics simulation

environment.

The Agent is an interactive program, the commands entered by the user are immediately

executed, and their results are printed or displayed on the screen. The program code is

contained in one executable file typically named 'agent'. Typing 'agent' at the shell prompt

will invoke it. Upon startup the agent initializes the graphics display and loads in some

initial commands from the file named 'sctup.cmd' if this file exists on the current directory.

After this the agent's prompt appears on the screen indicating that it is ready to accept

In_elligen_ Graphic Modeling Environment 44

commands from the user. The agent's input and output streams can be redirected to pipes,

this way it is possible to issue commands by these programs.

4.3.1 Command format

The agent uses a character stream command protocol. Commands can be entered from the

system console, loaded in from a file, or sent by another program using the pipe mechanism

provided by the operating system. The general command format is:

[<label>:] <command-name> <argumentl> ... <argumentN> [; comment]

with the following rules:

1. One command per line.

2. command parameters are separated by at least one white space (SP,TAB) character

. There might be an optional semicolon at the end of the command, anything be-

tween this character and the end of the line will be considered as a comment. Lines

beginning with a semicolon will be considered comment lines.

4. There is a way to create multiple line commands, by inserting a backslash character

immediately before the line terminator character.

5. There is an optional label field in the command line. Labels are immediately followed

by a colon character.

6. Movement commands can be issued only to the agents (robots) in the workspace.

. Multiple agent movement commands per command line are possible. The individual

commands are separated by commas in this case. Each of these should be directed

to a different agent in the system, which will execute the commands parallelly. The

execution of the next command line begins, when the last agent finished its operation.

In contrast, if commands to two different agents are placed into consecutive command

lines, the execution of these commands will be sequential.

4.3.2 Error reporting

While processing the environment configuration commands, the Agent generates an error

log stream. For each command line which could not be processed, there will be an entry

in this stream. The format of this entry is the following:

*** Error in line [IabeI:NNNINNN] --- <error code> <error message>

Intelligent Graphic Modeling Environment 45

If there was a label preceding the command containing the error, then the error message

will contain the name of the last seen label and the number of lines read since the last label

was encountered. If the command stream did not contain labels, then the error message

will contain the number of the command line counted from the beginning of the stream.

(Line numbering is zero-based, that is the first line of a stream, or the line containing a

label has offset 0.) Currently the following error messages are defined:

1 Undefined command: <command>

2 Unknown object: <command>

3 Too many arguments

4 Missing argument(s)

5 Illegal argument: <index of command argument>

6 Internal error (This error message will be given if the agent itself did not find any error

in the command, but the execution of the command failed in ROBOSIM or in the

simulation environment.)

7 Object not an agent: <command>

8 Multiple commands for the same agent: <2nd. command for agent>

9 Illegal coordinates: <command> (This message will be given if the desired coordinates

axe out of the agent's workspace, so no inverse kinematics solution exists.)

I0 Joint violation:<agent> <joint index>

11 Collision:<type> <objectl> <object2> [<jointl> [<joint2>]], where type:

0 object to object

1 agent to object (1 jointfield)

2 agent to agent (2 jointfields)

The optional joint fieldsare filledout in the error report ifagents are involved in the

collision.

12 Internal movement error. (This message is reserved for unforeseen execution errors

within the Simulation Library.)

13 Hand is already holding object: <object>

14 Hand is not holding object: <object>

Note that in case the error message contains the original command line,only the

offending command willbe included from multiple agent commands.

Intelligent Graphic Modeling Environment 46

4.3.3 Object creation commands

make-object <object name> <object type> <parameters>

This command creates an object in the workspace of the agent. Various objcct types

have been defined, they and their parameters are described below.

line <xend> <yend> <zend> [<color>]

polyline <xl> <yl> ... <xn> <yn> [<color>]

polygon <x1> <yl> ... <xn> <yn> [<color>]

All lines objects are created with their starting point at the origin of the coordinate

system. Polylines and polygons are always created in the XY plane, they can be rotated

later if necessary. The optional color parameter is the name of a user defined color (see

later). All other parameters are numbers. The agent does not make any assumptions

about the physical units used, it is the responsibility of the user to specify the sizes of each

object in a coherent way.

box <xsize> <ysize> <zsize> [<color>]

cylinder <radius> <height> [<color>]

cone <radius> <height> [<color>]

truncated-cone <radiusl> <radius2> <height> [<color>]

sphere <radius> [<color>]

All solid objects are created with their center of mass at the origin of the coordinate

system and their principal axis parallel with the Z axis. The color parameter is used in a

manner identical to its usage at the line objects.

4.3.4 Object transformation commands

translate-object <object> xffi<xtran> y=<ytran> z=<ztran>

rotate-object <object> x=<xrot> yffi<yrot> z=<zrot>

These commands have a slightly different argument structure which serves the purpose

of using defaults. If any coordinate direction is missing from the arguments, it is supposed

to be 0. The order of the arguments is up to the user, i.e.:

translate-object boxl x=12 y=23 z=5

translate-object box1 y=23 z=5 x=12

are both accepted. Transformations are performed in the order of the arguments in the

argument list. (This may make a difference in the case of rotations.) The rotate command

expects its arguments in degrees.

Intelligent Graphic Modeling Environment 47

4.3.5 Composite objects

make-composite-object <name> <object1> <object2>

link-objects <name> <object1> <object2>

These commands createa new composite object by joiningthe objects in the argument

listpermanently. They do not perform any transformations on the argument objects,

but simply use their current positions. The firstcommand willcreate a new object and

leave the components in the workspace, while the second one willremove allcomponents

from the workspacc aftercreating the composite object. Composite objects can be used

(transformed, operated on by agents, etc..) in a manner identical to the elementary objects.

4.3.6 ROBOSIM objects

make-robosim-object <name> <filename> <objectname> [<color>]

This command can be used to create a composite object using its ROBOSIM source

coclemodel. The specifiedfileisscanned untila STORE-FILE command isencountered with

the specifiedobject name as itsargument. (See the ROBOSIM manual for more details.)

As ROBOSIM does not have servicesfor coloring objects,an optional color parameter is

alsoaccepted. It willbe useclto color the whole object. (I.e.regardlessof the complexity

of the ROBOSIM model, the whole object willbe colored with the same color.)

4.3.7 Agents

make-agent <name> <agent-type> [<color>]

Creates an agent. Agents are basically robots whose models have been precompiled

using ROBOSIM. Currently one example agent is available, the PUMA 560 manipulator.

This agent model uses the real dimensions of the puma arm in millimeters, so size the

other objects accordingly!

4.3.8 Object removal

destroy-object <object>

This command removes the descriptor of the named object from the agent's workspace.

It might be useful when building composite objects and then selectively removing the

unneeded parts.

Intelligent Graphic Modeling Environment 48

4.3.9 Agent positioning

drive <agent> <joint angles>[<joint angle vector name>

drive-find <agent> <joint angles>[<joint angle vector name>

move-straight <agent> <coordinates>

move-inter <agent> <coordinates>

find-path <agent> <coordinates>

move-straight-to <agent> <object> <coordinates>

move-inter-to <agent> <object> <coordinates>

find-path-to <agent> <object> <coordinates>

Each of the above commands positions the agent. The coordinate specifications are

agent specific, for the PUMA arms they must contain six values of either joint angles (only

for the drive and drive-find commands) or rectangular coordinates (x, y ,z, roll, pitch,

yaw) either workspace absolute or object relative (xxxx-to commands). The movement

can be straight line (move-straight, move-straight-to) or joint-interpolated (drive, move-

inter, move-inter-to), or the agent can be instructed to find a path to the desired location

based on its knowledge of the workspace configuration (drive-find, find-path, find-path-to).

The drive and drive-find commands also accept a previously recorded joint angle vector.

(See later.)

translate-agent <agent> x=<xtran> y=<ytran> zf<ztran>

rotate-agent <agent> xf<xrot> yf<yrot> zf<zrot>

These commands are useful when small incremental motions of the robot arm are

needed. They always perform straight-line motion. The coordinate specification uses the

same scheme as the object transformation commands, that is the coordinates are named,

and any unspecified coordinate direction is supposed to be 0.

drive2 <agentl> <agentl> <anglesl>[<vectorl> <angles2> J<vector2>

This is a version of the drive command for two manipulators. It is included only for

backward compatibility, new programs should use the multiple commands per line feature.

The parameter structure is identical to the single manipulator drive command.

movexy <agent> <x> <y> <z> <roll> <pitch> <yaw>

This command is useful for quickly positioning the agent. It willmove the agent to

the desired location (always interpreted as workspace absolute coordinates) in one step,

without path synthesisand collisionchecking. It isusefulfor seeing target locations.This

command willnever operate a realrobot manipulator, even ifone is attached.

shift <agent> x=<xtran> yf<ytran> z=<ztran>

This is a single step version of the 'translate-agent' command. Its operation is similar

to the 'movexy' command, and its parameter structure is identical to the 'translate-agent'

command. NOTE: the 'movexy' and 'shift' commands cannot be used in multiple agent
movement command lines!

minimal-step <value>

Intelligent Graphic Modeling Environment 49

This command sets the robot movement simulation step size for the movement com-
mands.

set-solution <agent> <value>

This command selects the inverse kinematics solution used for the agent. The cur-

rent inverse kinematics method for the PUMA 560 arm provides 8 different solutions for

(almost) any location. Some of these solutions are typically invalid due to joint angle

constraints. The accepted range for 'value' is 0 ... 7. The argument to the 'set-solution'

command sets the configuration the following way:

right handed: 0..3 (bit 2 = O)

left handed: 4..7 (bit 2 = 1)

elbow down: 0,1,4,5 (bit 1 = 0)

elbow up: 2,3,6,7 (bit 1 = 1)

wrist down:

wrist up:

0,2,4,6 (bit 0 : O)

1,3,5,7 (bit 0 = 1)

The command also accepts the special value of-1 which instructs the agent to select

the most suitable solution automatically. This is the default operation of the agent. Note

that setting a fixed configuration index will more likely result in joint limit violation error

messages, since the agent has no chance for switching solutions. For small movements

the automatic selection is based upon choosing a valid configuration which is closest to

the current joint variable values. This strategy works best when the agent is performing

various tasks in a relatively small part of the workspace. However for a major position shift

this may not be the best approach. In such cases the agent will select a new configuration

which offers the most room (i.e. all joint angles are as far from their respective limits

as possible) for moving around in the vincinity of the new location. To determine which

strategy tois to be used the agent compares the joint angles of the old and new positions. If

the difference is larger than a preset threshold, then the second method is used, otherwise

the first. This threshold value can be set with the following command (default value is 45

degrees):

set-large-move-limit <limit>

In most cases this strategy should work fine. However it is possible that in some cases

explicit control of the robot arm configuration is necessary. (It is most likely to occur if

relatively large straight-line motion segments are needed. In straight-line motion mode

the agent considers a configuration change an error, since it would result in an abrupt

reorganization of the links during the motion segment.) For such situations the agent

offers the following configuration management commands:

get-solution <agent>

prints out the currently used configuration index. Note that you will get a value between

0 and 7 even if you use the automatic selection method.

get-valid-solutions <agent>

Intelligent Graphic Modeling Environment 50

prints out the indices of all valid configurations for the current position.

freeze-solution <agent>

is equivalent to using 'set-solution' with the value obtained by using 'get-solution'.

The agent also performs collision testing while moving the robots in the workspace.

The collision testing can be enabled/disabled with the following command:

set-collision-check <flag>

If the flag value is nonzero, collision checking is turned on, otherwise it is turned off.

Initially the collision checking is enabled.

display-tries <flag>

This command can be used to enable/disable the display of the collision avoidance

attempts performed by the agent (when using the 'find' family of the agent movement

commands. If the flag value is nonzero, the avoidance attempts will be displayed, otherwise

not. If the display is disabled, only the beginning phase of the operation (until the first

collision is detected) and the complete collision free path (if found) will be shown. Initially

the display of the avoidance attempts is enabled.

4.3.10 Position reporting

get-position <agent>

get-angles <agent>

record-angles <agent> <joint vector name>

These commands write a lineof the following format to the report stream:

position of agent <a> in line [IabeI:NNNINNN] --- <coords or angles>

These commands behave differently based on the operating mode of the agent. If the

agent is in simulation only mode, then the manipulator model's joint angles or coordinates

are reported. If the agent is connected with a real robot manipulator then the robot

hardware is queried for the actual joint angles, the agent's model is updated with the
reported angles, and these angles are printed out. This way the usage of these commands

will synchronize the agent's model with the actual manipulator. For the line numbering

convention in the report stream see the explanation at the error report messages. The

get-position command prints the position in world (rectangular) coordinates, while the

get-angles command in joint angles (in degrees). The record-angles command is similar to
the get-angles command, but it also records the angles in a coordinate vector which will be

associated with the symbol specified in the command line. Coordinate vectors can be used

as parameters for drive commands, and they are generally useful for recording important

locations in the robot's workspace. The coordinate vector data base can be saved and

restored with the following two commands:

save-positions <filename>

load-positions <filename>

Intelligent Graphic Modeling Environment 51

As an additional safety measure against inadvertently losing important data, the agent

automatically saves the current coordinate vector set into the last used file if either a save

or a load command was executed previously.

4.3.11 Grasping

The agent's grasping operations are based on grasping attributes associated with each

object in the workspace. These are the grasping coordinates - in an object relative coor-

dinate frame - and the grasping opening used to establish contact with the object. The

grasping attributes are best specified immediately after object creation, when its location

is still known, and then the grasping coordinates will be transformed any time the object

is moved. Commands:

define-grasping-point <object> <x> <y> <z> <roll> <pitch> <yaw>

establishes the grasping point and hand orientation in an object- relative coordinate
fra/-ile.

define-grasping-opening <object> <distance>

establishesthe hand opening which isused to grasp the object. The hand is CLOSED

to the above distance upon grasping...

def ine-default-grasping-gap <distance>

This is the EXTRA hand opening above the value specifiedabove when the hand is

moving in to grasp the object. This is a global value, but may be overwritten for individual

object by using...

define-approach-opening <object> <distance>

The default approach opening (-- grasping opening + default gap) can be overwritten

for individual objects using this call.

move-to-grasp <agent> <object>

This command moves the hand to the grasping point of the object and opens it to

the approach opening (defined using either the default gap or the individual approach

opening commands). It will give an error message if the hand already holds an object.

This command uses the 'find-path' command's method to get to the desired point.

grasp <agent> <object>

This command grasps the selectedobject. The hand isalready supposed to have been

moved to the grasping point of the object,ifnot, an errormessage isgenerated. Ifthe hand

is not empty an error message is generated. Otherwise the hand closesto the grasping

opening associated with the object, and in the simulation'sdata base a temporary link is

set up between the object and the lastlink of the robot manipulator.

release <agent> <object>

This is the opposite of grasp. Itgives an error message ifthe hand is not holding the

specifiedobject. NOTE: the agent does not model effectslikegravity,etc..Ifan object is

released in the 'air'it willstay there in the simulated environment, but of course it will

drop in the realworld - leading to inconsistenciesbetween the world and itsmodel.

Intelligent Graphic Modeling Environment

4.3.12 General graphics setup

52

look-from <x> <y> <z>

look-at <x> <y> <z>

twist-camera <angle> <incremental>

Establish parameters for the viewing transformation.

define-color <name> <r> <g>

Specify color. Red Green and Blue intensities are 0.0 ... 1.0

light-source <x> <y> <z> <color> <ambient>

Specify light source. They are not needed for wire frame display, only for the other

types. The ambient parameter just serves as a place holder, its value is not important. If

it is present then the light source is ambient, otherwise it is directional.

display-type wireframe [solid Jshade

Define graphics display option to be used.

4.3.13 General commands

load <filename>

Take commands from the specified file. Returns when end of file or the 'exit' (or 'end')

command is encountered. Loads may be nested.

set-echo <flag>

Controls the echoing of the commands read from a load file. If the flag value is non-zero,

echoing is enabled, otherwise it is disabled (it is the default upon startup).

exit

end

If given from the standard input exits the program. If given in a load file, finishes

loading.

clear

Removes all object, agent, color, etc.., declarations from the system.

This concludes the description of the command interface of the Agent package.

4.4 Automation Interface for Robot Modeling Sys-

tems

Previously we summarized the features we think are expected from a graphics modeling

system to utilize the power of knowledge-based techniques in three dimensional world

modeling. This section describes some of these knowledge-based techniques themselves.

The Department of Electrical Engineering at Vanderbilt University has a long history of

Intelligent Graphic Modeling Environment 53

building large knowledge-based engineering applications in the fields of instrumentation,

process control, simulation and testing. In the course of this work we have developed

numerous knowledge-based tools for this specific purpose.

The design of large-scale engineering systems that must operate in unstable, chang-

ing situations is one of the foremost challenges of the information sciences. Conventional

design methodologies are based on the availability of a priori information about the envi-

ronment and the system to be observed and controlled. The information is expressed in

the form of models representing relevant aspects of the environment. The basic modeling

principles of the system sciences such as separation, selection, and model economy are the

key approaches for managing complexity. The essence of these principles is simplification

until a model of manageable size is obtained. By imposing constraints on the possible be-

havior of the environment, the analysis and/or synthesis of the corresponding automation

system becomes feasible.

There are two main ways how knowledge-based techniques can be used to satisfy the

above goals. In many eases the more traditional rule-based, shallow modeling techniques

can provide quite satisfactory results. The other approach is to use as much structural

information about the environment as possible, in order to create a structural, deep model

of the system. Both approaches have advantages over each other, so the best strategy is

to use them together to solve complex engineering problems.

The graphics modeling toolkit described previously is intended to be used together

with knowledge-based controllers. For the intelligent controllers using structural, deep

modeling techniques, we use the MULTIGRAPH programming environment (developed at

Vanderbilt) described later in this section.

We think that the two knowledge-based techniques can 'peacefully coexist' in complex

systems using geometric, structural modeling. For example, in one possible application

area, in Space Station automation, a typical scenario for the joint usage of the different

techniques might be the following:

. Application areas for geometric modeling techniques:

- The geometric model of the Station itself

- Models of different manipulators operating on the outside or in the inside of the

Station

- Other moveable attachments to the Station, like solar panels, hatches, etc..

• Application areas for knowledge-based (rule-based) techniques:

- Scheduling of different operations on the Station

- Task Planning for robotics applications on the Station

- Creating qualitative models of those subsystems which can not be modeled

analytically due to their complexity or lack of information

• Application areas for structural modeling techniques (MULTIGRAPH):

Intelligent Graphic Modeling Environment 54

- Modeling those subsystems where the structural and operational data is avail-

able to create qualitative, structural models

- Modeling control systems

- Fault propagation modeling and failure analysis

Of the above three techniques, the geometrical structural modeling toolkit has already

been described in this report, and the rule-based techniques are supposed to be well-

known, since they have been in use for quite a long time. But we think, that the struc-

tural knowledge-based modeling methodology and its run-time environment (the MULTI-

GRAPH architecture, which has been developed at Vanderbilt), deserves some more ex-

planation.

Model-based knowledge-based methodologies have great potential in implementing au-

tomation systems for a wide range of applications. The main idea is quite straightforward

and includes the following steps.

• A dynamic model of the environment (the system to be observed or controlled) is

included in the higher-level knowledge-based controller of the automation system.

• The model is continuously updated based on observations.

• The control system is modified (structure and parameters) if state changes in the

model require it.

We will focus on the computational problems of creating structurally adaptive con-

trollers by using model-based techniques. The purpose of the discussion is to show the

key components of a programming and execution environment that can be used for imple-

menting this new system category.

The main computational requirements in the implementation of structurally adaptive

controllers are the followings:

• The dynamic model of the environment and its interactions with the structure of the

control system must be represented.

• The representation must be used as part of the control process, i.e. changes in

the environment model must be mapped into changes in the structure of selected

automation system components.

• The structural changes must be executed without suspending the system operation.

By using artificial intelligence terminology, the first requirement creates a knowledge

representation problem. Naturally, the model-based approach demands the explicit rep-

resentation of automation system models. The key issue is what kind of representation

techniques can be used for this purpose? The second requirement addresses the problem of

knowledge utilization. The knowledge which represents the interactions between the envi-

ronment and the structure of the control system has to be actively used for modifying the

Intelligent Graphic Modeling Environment 55

system operation. The problem is how to "convert" this knowledge dynamically into im-

plementation specific terms? The third requirement is closely related to the computational

model used in the execution environment of the control system. The question is what kind

of computational model can support the dynamic reconfiguration of a processing system
in execution time?

The main difficulty in the technology of intelligent adaptive automation systems is that

realistic implementation can not be built without finding satisfactory solution for each of

these problems. In the followings we will focus on the description of the components of

the Multigraph Architecture which has been designed to serve as a generic programming

and execution environment for this system category.

The Multigraph Architecture (MA) has been developed for building a broad category
of intelligent systems operating in real-time environment. The MA has been used as

a framework for intelligent instrumentation, automatic test configuration, and process

control systems. The basic layers of the MA are the: (1) hardware layer, (2) system layer,

(3) module layer, and (4) knowledge layer (Fig 4.2). In Fig4.3, the three main levels of the

MA are shown from the user's point of view.

Model Designer. The design and implementation of model-based, intelligent con-

trol systems requires extensive modeling. Because the unforeseen operational condi-

tions might require structural modifications in the control system, the models must

be hybrid. Hybrid models explicitly represent not only quantitative, but qualitative,

structural attributes of the environment and the control system. Model designers
must be supported by appropriate tools to build and validate these models.

Application Programmer. The models that are used in the design and imple-

mentation of intelligent automation system are domain specific by their very nature.

The form of the models (concepts, relationships) are different in chemical processes,

mechanical processes, information processing systems etc., because the models must

reflect the selected properties of these systems. However, some of the basic model-

ing principles, such as composition techniques, organization in levels of abstraction,

multiple-aspect representation, etc. are quite universal. This generality makes it pos-

sible that the creation of domain specific modeling tools can be supported by general

methodologies. The application programmer level in MA includes those components

that are used for building various, domain specific modeling environments.

System Programmer. The lowest level of MA provides interfaces to the com-

ponents of the Multigraph Execution Environment (MEE). The central element of

MEE is the Multigraph Kernel (MK), which is the run-time support of the Multi-

graph Computational Model (MCM). MCM is a macro-dataflow model which satisfies

the required dynamic behavior mentioned before.

The models that are created during the modeling process are complex structures rep-

resenting different aspects of the environment, the control system and their interactions.

Intelligent Graphic Modeling Environment 56

KNOWLEDGE-BASED

LAYER

OBJECT MODELS

DECLARATIVE LNG.

INTERPRETERS

MODULE LAYER

MULTIGRAPH MODEL

MODULE LIBRARIES

DYNAMIC SCHEDULING

SYSTEM LAYER

OPERATING SYSTEM

NETWORKING SUPPORT

RESOURCE MANAGEMENT

HARDWARE LAYER

SINGLE OR MULTIPLE

PROCESSOR

SHARED MEMORY/DISTRI-

BUTED ARCHITECTURES

SPECIAL HARDWARE

Figure 4.2: Layers of the Multigraph Architecture

Intelligen_ Graphic Modeling Environment 57

MODEL

LIBRARY

DLL

PGE

APPLICATION
PROGRAMMER

SYSTEM

PROGRAMMER

DECLARATIVE LNG.

GRAPHIC EDITOR

1
DATABASE

INTERPRETERS

1 ,
MULTIGRAPH KERNEL

l
HARDWARE & OS.

TEST

AND

VALIDATION

t--J
1__

PROG.

TOOLS

FOR

Figure 4.3: Structure of the Multigraph Architecture

In_elligen_ Graphic Modeling Environmen_ 58

It is important to note that in these models the structural complexity is the dominant

factor, the algorithmic complexity is typically negligible. This fact had deep influence on

the properties of the Multigraph Programming Environment (MPE). The two basic tech-

niques used for supporting this activity are (1) multiple-aspect model building and (2)

declarative/graphic programming.

• Multlple-aspect model building. Characterization of objects from different as-

pects is a well known method in modeling. There are artificial intelligence (AI) tools

that directly support the creation of "multiple views". According to our experiences,

the real difficulty is not the representation of different aspects but the expression of

the interactions among them. The critical question is how to facilitate the well struc-

tured representation of these interactions? MPE allows the declaration of structurally

independent (SI) and structurally dependent (SD) modeling aspects.

• Declarative/graphic model building tools. Modeling requires tools for repre-

senting the models. The representation technique has to satisfy two contradictory re-

quirements. First, the representation system must provide "interface" for the model

designer, i.e. the represented model has to be easily comprehensible by humans.

Second, the represented model has to be machine readable, because the models con-

stitute the "knowledge-base" which determines the system operation. Based on these

requirements and on the fact that the models express dominantly structural infor-

mation, MPE supports two equivalent representation form: declarative languages

and the corresponding graphic representation. The model building process, which

is performed by the model designers is fully graphical and directly supports SD and

SI modeling.

Figure 4.4 shows the graphic model a reconfigurable controller for a simple robot

arm. The arm is controlled by (a) a proportional controller, or (b) a PID controller.

The reconfiguration occurs when the "Checker" finds the performance of one of the

controller unacceptable. The figure shows only the top level structure of the con-

trollers and the simulation model of the arm. Each of the boxes have an internal

structure on the lower levels of the hierarchy. The graphic model has been built

by using the iconic editor of MPE. There exist an equivalent declarative language

representation of the model. This declarative language is a variation of the "frame

languages", which can be easily defined for the different modeling domains.

• Test and Validation Tools. Declarative languages offer excellent opportunity for

automatic test and validation. The basic approach used in the test and validation

toolset of MPE includes the following steps:

- the declarative language forms are mapped into a unified graph structure,

- test and validation criteria are defined for the different modeling aspects,

- the criteria are expressed as graph properties, and

- graph algorithms are used to check the properties.

Intelligenf Graphic Modeling Environment 59

!................................i

i II _! ' .,! i -,.

i!i i
!
I

!
i

.......................ni---_--mm

Figure 4.4: Graphical model for a reconfigurable controller

The methodology supports the automatic consistency testing of the individual mod-

eling aspects and the consistency testing among the SD aspects. A serious limitation

of the test approach is that only static properties of the models can be tested this

way. In a new research direction we address the problem of testing the dynamic,

run-time behavior of the system.

An important goal of MPE is to facilitate the definition of declarative languages and

the corresponding graphic editors for new application domains. Generic tools belonging

to the level of the Application Programmer support this task which includes the following

steps: (1) definition of the syntax of the declarative languages, and (2) configuration of

the corresponding graphic editor. The two programming tools developed for this purpose

are the Declarative Language Language (DLL), and the Programmable Graphic Editor

(PGE), respectively.

Multiple-aspect models of the external environment (platforms, signal sources, etc.),

the various components of the control system (monitoring systems, controllers, etc.), and

Intelligent Graphic Modeling Environment 60

their interrelationships embody the information that is necessary to generate a specific

instance of the knowledge-based controller for the automation system. The .problem of

system integration is to generate this instance from the models, or in other words, to

map the models into an appropriate executable program. Because of the implementation

method of this mapping, we will call this process model interpretation.

The complexity of the model interpretation process largely depends on the nature of the

models. If it includes only the symbolic, static model of a specific system, e.g. the model

of a controller, the model interpretation process is reduced to the complexity of simple

application generator systems. In the general case, the structurally adaptive controllers

require the following capabilities from the model interpretation process.

Multiple-aspect interpretation. The result of the model interpretation process

must generate more than one subsystems. Multiple-aspect model interpretation

means that the mapping process must interpret the models from the aspects of

the various subsystems to be generated.

Decision making. The complexity of the mapping process is largely the conse-

quence of the fact that the models are not structured according to the subsystems

of the system to be generated. (Except the simple application generator problems,

where modeling is usually constrained to specific computation systems to be gen-

erated.) Indeed, in model building time the natural way of thinking is to focus on

selected aspects of the environment, the control system and their interactions with-

out any explicit considerations to the actual way of implementation. The model

interpretation process has to be "smart enough" (1) to collect the relevant infor-

mation from the models for the various subsystems, and (2) during this process to

make decisions on the actual structure of the computation system by analyzing the

interaction of the different modeling aspects.

Dynamic behavior. The essence of any structurally adaptive system is the ca-

pability for dynamic reconfiguration of subsystems after a change in the working

environment has been detected. It means that the model interpretation process has

to be restartable from that point which has been effected by the detected change.

These capabilities required the elaboration of a special computation model in the Multi-

graph Execution Environment (MEE). MEE provides a system integration tool by sup-

porting the dynamic configuration of application programs from a library of precompiled

elementary processing modules. This configuration process can be performed by the higher-

level knowledge-based system components using an appropriate builder interface of the

MEE. Frequently the usage of the MEE also enables the utilization of the inherent struc-

tural parallelism in the application programs, since it is quite typical that many of the

processing modules of an application configured using the above method can be executed

concurrently, provided that the underlying hardware architecture supports this.

MEE uses a macro-dataflow model as its basic computational model. The reasons

for this choice were (1) the well-known nature of the dataflow computations due to the

Intelligent Graphic Modeling Environment 61

significant amount of research conducted on exploring the theoretical properties and im-

plementational issues of these, and (2) the fact that many engineering system models (for

example the signal flow graphs used in signal processing and process control systems) can

easily be mapped into dataflow graphs. Some extensions were added to the "typical"

dataflow computational concepts, because the MEE serves as a unified run-time support

for the different parts of the intelligent automation systems, and these parts might use

different models of computation (for example signal-flow graphs, discrete event simulators,

rule interpreters, constraint propagation networks, etc..).

The applications in the MEE are mapped into a control graph. A control graph in

the MEE is defined by its actornodes, datanodes and connection specifications. The

actornodes are the active components of the graphs. They execute an application module

(the script) which can be written either in Lisp or in other non-symbolic languages (C,

Fortran, Pascal). The scripts are position independent, they communicate with the other

graph components using the communication primitives of the MEN and the ports attached

to the actor node. If the code of the script is reentrant, it can be attached to several

actornodes. The MEE provides a way to pass a local parameter structure to the scripts,

which is called the context of the actornode. Beside the typical dataflow control principle

(a node can be fired whenever all of its inputs are present - ifall mode) MEE also supports

another mode of actornode execution, where a single input data is enough to fire a node

(ifany triggering mode).

The datanodes are the passive components of the control graphs. Their function is to

store the data generated by the actornodes. They can store either a stream of data, or

only the last data sent to them.

MEE supports several operation modes of a control graph. A graph can be operated

either in data-driven or demand-drlven mode, or in a combination of the two modes.

In the data-driven mode, the data sent to a datanode propagates a control token to the

following actornodes, which will fire after collecting the necessary tokens. The demand-

driven mode means that an attempted read operation on an empty datanode will send a

request token to all possible sources (ie. the connected actornodes) of the information.

MEE provides an environment and task structure which is used to assign the various

system resources of the system hardware and software (processors, tasks, special hardware

units, etc..) to the execution of the actornodes in the computational graphs.

The structure of a typical implementation of the MEE can be seen in Fig4.5. MEE

can be depicted as a set of protected data structures which can be accessed through the

following three interfaces:

• Module Interface: which provides the data and request propagation calls for the

application modules attached to the actornodes.

• System Interface: which is responsible for scheduling the elementary computations

using the system resources provided by the host operating system.

• Builder and Control Interface: which provides the control graph building and

execution control facilities for the higher-level knowledge-based system components.

Intelligent Graphic Modeling Environment 62

Module

Library

i

M'[
Ill

otl

U,]

I al

u p i

KS Components

[Builder/Control Interfaee

A
v

Shared Control Graph

System Interface

Operating System

Figure 4.5: Structure of the MEE

Intelligent Graphic Modeling Environment 63

The services of this interface can operate on an already active computational graph,

which enables the dynamic reconfiguration of the application programs.

MEE offers a set of debugging tools which are especially helpful in concurrent systems.

These include a stepper/tracer facility and a graphic monitor, which generates and displays

the graphic layout of selected parts of the control graph, and dynamically displays the

status of the nodes in the graphic window.

The computational model and the details of its implementation were selected such

that the Kernel can provide the same execution environment on a variety of computer

architectures, by hiding the details of the (possibly parallel) execution from the application

modules, which can be simple sequential procedures in every case.

4.5 The HDL System

The Hierarchical Description Language (HDL), described below, is an important compo-
nent of the automation testbed. Robot simulation should involve simulation of the robot

control system, and this is the place where HDL plays the role of the knowledge-based

component. It supports the definition of signal processing systems using very high-level

facilities. These facilities include a graphical editor for editing HDL declarations (i.e. block

diagrams). The HDL system is embedded in a Lisp environment which can communicate

with the Agent system described above.

4.5.1 Introduction

This system has been developed for the generation and dynamic modification of real-

time signal processing systems. It includes: (1) a declarative language, HDL for the

hierarchical representation of procedural networks, (2) an interpreter which builds a specific

version of the signal processing system, and (3) an execution environment. The execution

environment is provided by the Multigraph Kernel (MK), which is the run-time support

of the Multigraph Computational Model (MCM).

The system works like a hierarchical, planner in the following sense:

• the signal processing system (or more generally, a procedural network) is built ac-

cording to a set of specifications, which is defined as goal for the interpreter,

• the "selection rules" driven by the required specifications are structured hierarchi-

cally,

• the building process can be contingent upon events detected in the execution envi-

ronment,

• events can be fed back to the building process, and may initiate the modification of

the existing signal processing system.

Intelligent Graphic Modeling Environment 64

The outcome of the planning process is a signal processing system (procedural network)

which runs under the control of the Multigraph Kernel. The run-time environment can

be parallel, the network may run on a single- or tightly--coupled multiprocessor configu-

rations. The implementation also supports the distributed computing environments, i.e.

large procedural networks can be generated for computer networks. The building process

generates a dynamic user interface and execution monitor for the network, which can be

used for controlling and monitoring the system operation. A graphic monitoring facility is

also available for displaying the hierarchical structure definitions.

This manual was written for those, who are already familiar with the Multigraph Com-

putational Model, the basic representational principle used in HDL [1], and who have

experiences with the Multigraph Kernel [2].

First, the semantics of the HDL is described, then the monitor and the user interface

are discussed. The last section contains an example program. In the Appendix C the "C"

interface of the system is described.

4.5.2 Semantics of HDL

The representation scheme used in HDL is described in [1]. The basic concept of the lan-

guage is the module. A module can be either primitive or compound. Primitive modules

do not have internal components, compound modules consist of other (primitive or com-

pound) components. It is obvious that the primitives are related to actornodes executing

a primitive algorithm while the compounds can mean a group of actornodes with internal

connections. The module descriptions (in the sense of the language) are only structural

specifications i.e. definitions and declarations, and do not include directly the code of the
primitives.

An important feature of HDL is the parametrization of the structures. The parameters

are entities which determine some properties of the structure. Parameters can be either

static or dynamic. The static parameters are fixed during the interpretation of the structure

and there is no way to change them without generating of a new structure. The dynamic

parameters can be changed dynamically, and can be used for controlling the operation of

the signal processing system. (This is why we usually use the term "control parameters"

for the dynamic parameters.) A typical dynamic parameter is the "Start-Stop-Signal" for

a module, or a the "tunable" time-constant of a digital filter, etc. Every block in HDL

can have both static and dynamic parameters. The parameters are not constrained, which

means that it is the users responsibility to handle and to interpret them in the scripts

consistently. Parameters can be defined in compound strucures and they can be passed

along to other component structures, by the low-level primitives written presumbaly in

non-symbolic languages. The parameter mechanism is built on the context mechanism of

the Multigraph Kernel in the sense, that a parameter set for a particular primitive is the

context of the corresponding actornode.

Intelligent Graphic Modeling Environment 65

4.5.3 Declaration of Primitive Modules

A primitive can be defined with the declaration :

(defprimitive

Name Discipline

Io_interface Parameter_interface Control_interface

Environment_interface Task_interface

Icon Picture

body)

The name identifies the primitive. The Discipline determines the control discipline of

the corresponding actornode, it can have one of the values : ifall and : ifany.

The Io_interface is a specification of signals used and driven by the primitive. It has

the following syntax :

(Input_signal_list -> Output_signal_list)

The signals correspond to the datanodes to which this actornode will be connected. Ei-

ther of the signal lists can be empty which means the lack of the corresponding connections.
If it is not empty it ' contains elements of the form:

Signal_name

or

(Signal_name Signal_type)

The former denotes a signal of type "Stream" while the other one denotes a signal with

the specified type (either :stream or :scalar). A run-time checking procedure will test

whether the passed signals have the same kind as it was specified in the specification of

the primitive. Identification of the signals is done by position.

The Parameter_interface consists of a list of parameters:

(Parameter_name*)

The parameters are the "static" parameters for the primitive, the Parameter_name is

only a symbol specifying the name for the parameter.

The Control interface defines the dynamic parameters for the the primitive, and

has essentially the same syntax as the parameter interface:

(Control_parameter_name*)

The control parameters are the 'dynamic' parameters for the primitive.

From the static and dynamic parameters a parameter table will be constructed which

will constitute the context of the actornode. The parameter table is a vector (in the case

of actornodes running Lisp scripts) or an MGK buffer (in the case of foreign actornodes).

Intelligent Graphic Modeling Environment 66

The slots are filled according to the sequence order of the static and dynamic parameters:

first come the static parameters, then the dynamic parameters. In the case of the static

parameters the values are copied into the table, while in the case of the control parameters

a pointer to the value is passed. (It is necessary because the user might want to modify

the value of the dynamic (control) parameter and the actornode should sense the change

in some way, too.)

The Environment_interface and Task_interface are lists containing exactly one

symbol which identifies the environment and task in which the primitive is executed. They

are here merely for compatibility with the compound declarations, they do not play any

role.

The Icon and Picture components are solely used by the graphics editor, their contents

should not be the user's concern.

The Body of the primitive can be either a string or an arbitrary Lisp function body.

If it is a string it is interpreted as the name of the foreign module to be handled by the

Multigraph Kernel. If it is a Lisp function body (i.e. an implicit progn) a new function will

be created which has the name of the primitive with the string "-fnc" concatenated. The

body of the Lisp function will contain the definition as specified in the primitive definition,

but it will be surrounded by a let-form which contains the following elements as variables:

1. The names of signals bound to the appropriate index number in the sequence of the

signal specifications. (Note that both the name of the first input signal and the first

output signal will be bound to 0.)

2. The names of parameters and control parameters bound to the current values of the

parameters and control parameters. (Note that in the latter case the value of the

control parameter is supplied rather instead of the pointer to the value.)

With the help of this 'let'-form one is able to refer to the signals in the the various

MGK functions, and to parameter values in any expression. (See the example.)

4.5.4 Declaration of Compound Modules

A compound can be defined with followingform:

(defcompound

Name

Io_interface Param_interface

Control_interface

Environment_interface Task_interface

Icon Picture

Keyworded_list)

The Io_interface, Param_interface, Control interface,

Environment_interface, and Task_interface are of the same _rmasin the case of

Intelligent Graphic Modeling Environment 67

the primitives. The only exception is that in the case of environments and tasks there can

be many symbols in the lists, and they do have meaning. They will be determined when

the structure is generated, as it will be discussed later.

The elements of the Keyworded list are processed when the structure is built and this

processing takes place in a sequential manner. This list consists of elements which are lists

of the form :

(keyword argument_list)

The possible forms of the keyword - argument list are the following:

(signals Signal_spec_list)

The Signal_spec_list is a list of signal specifications having the same syntax as in

the case of the Io_interface the Input_signal_list and the Output_signal_list.

These declarations are the internal signals of this module, which are used only by its

internal components. When the actual module description is interpreted, the corresponding

datanodes are generated and they will be 'passed' to the sub-modules.

(params Parameter_spec*)

The Parameter_spec is either a symbol (which denotes a parameter initialized to NIL),

or a list of two components, where the first symbol denotes the parameter name, the second

(being an expression) denotes the initial value for that parameter. These parameters are

local static parameters, and are created when the module is interpreted. They can be set,

modified and passed to the sub-modules as static parameters.

(shared Parameter_spec*)

This is the form for locally declared dynamic parameters. The same manipluations can

be done with them as with the static parameters.

The Variable_spec* denotes variable specifications of the form:

Variable_name

or

(Variable_name Initial_value)

The purpose of this declaration is the creation of local variables for the interpretation

process. These variables are created when the structure is interpreted. They will have an

initial value NIL if otherwise it is not specified. References to these variables are legal only

in the body of the compound structure (e.g. in the elements of the keyworded list). They

preserve their values in run-time also, and can be accessed with the help of the monitor

(see it later).

Intelligent Graphic Modeling Environment 68

(compute S-expressions)

This is an implicit progn where the S-expressions are evaluated at the time of the

construction. The S-expressions might refer to any element of the interfaces, to the declared

local signals, parameters, variables or sub-structures. The expressions are evaluated in the

order they were defined.

(struct Component_specification*)

This is the specification which describes the internal structure of the compound struc-

ture. A Component_specification is a list of lists in one of the following two forms:

• Simple form:

(Component_name

(Type_name Io_list

Parameter_list Control_list

Env_list Task_list))

• Conditional form:

(Component_name (

(Cond-i (Type_name-i

.°°.

(Cond-n

Io_list

Parameter_list

Control_list

Env_list Task_list))

(Type_name-n Io_list

Parameter_list

Control_list

Env_list Task_list))

The first form is for the declaration of fixed structures while the second one provides a

way to make design decisions at the time of generation. The Type_name determines the type

of the component. It must be the name of a primitive or a compound. The Component_name

will be bound to the newly created substructure in the scope of the body of the compound.

It is an entity inside of the monitor which contains the structure in the Multigraph sense

together with all of the information about it. This structure can be manipulated by

the monitor later. The Io_list is a list of signals of the form similar to that of the

Io_interface, except that here only names are allowed and no type specifications. The

names must be names of signals either coming from the Io_interface or declared locally.

The Parameter_list, Control_list, Env_list, and Task_list contain symbols which

Intelligent Graphic Modeling Environment 69

denote the parameters, control parameters, environments and tasks for the component.

Parameters.should either be local or coming through the interface of the compound, the

environment and task names should come from the interface. The elements of the lists are

passed by position and the lists are checked with the declarations of the substructures.

The simple form generates always the same structure as a component. The conditional

form takes the conditions, evaluates them, and selects the structure for which the evaluation

succeeds. If there is no succesful condition there will be no structure generated. The

conditions might contain any expression containing references to parameters, variables,

etc.

Thus an HDL structure can be built from the declarations as follows:

• The top-level compound declaration and the values of its parameters should be

specified.

• The HDL interpreter takes that declaration and instantiates it with the actual pa-
rameter values.

• Then the interpreter recursively calls itself to build the component structures. The

recursion stops when a primitive is encountered, in this case an actornode is created.

• The HDL interpreter returns a pointer to the root of the tree-structure built.

This building process can be initiated programatically or through a user interface.

4.5.5 HDL Programmatic Interface

This interface contains a set of Lisp functions which are exported from the HDL package.

The HDL declarations should be loaded into the Lisp environment just like any other Lisp

program, the HDL interpreter builds its internal databases at load-time.

The functions of the programmatic interface are as follows:

(get-hdl-def Name)

This functions returns the HDL declaration in the form of an S-expression, which is asso-

ciated with Name. It signals an error if there is no declaration.

(create-hdl-struct Name

Inputnodes 0utputnodes

Parameters Controls

Environments Tasks)

This function builds the HDL tree starting from the declaration identified by Name. The

lists Inputnodes and 0utputnodes contain datanodes which serve as input and output

connection points to the structure. The Parameters and Controls specify the list of

values for the static and dynamic parameters of the structure, while the list Environments

Intelligent Graphic Modeling Environment 70

and Tasks should contain MGK environments and tasks. The function returns an HDL

object which contains the instance of the declaration and all its components. This object is

used in the remaining functions. After generation all the actor- and datanodes of structure

are inactive and blocked. Before starting the structure for the first time, it is advisable to

issue a (init-kernel) command.

(part-of-hdl HDL-obj ect Names)

This function returns a component object of an HDL object, it should be identifiedby

the path of names which leads to itin the hierarchy. (Itis similar to the directory access

structure of Unix.)

(read-hdl-signal HDL-object Name)

This function evaluates the (dnode-value) function (of MGK) in the specified object as

environment, and the named signal as datanode.

(write-hdl-signal HDL-object Name Value)

This the corresponding functions to do a (dnode-write)

(get-hdl-signal HDL-object Name)

This function issimilarto (read-hdl-signal), but itsends requests to the datanode and

runs the network untila value isproduced.

(read-hdl-param HDL-object Name)

Retrieves the value of a dynamic parameter in the specified structure, which has the

corresponding name.

(write-hdl-param HDL-object Name Value)

Modifies the value of the dynamic parameter.

(activate-all HDL-obj oct)

This function can be used to activate all the actornodes in the HDL structure.

(deactivate-all HDL-obj ect)

The "inverse" of the previous function: it deactivates all the actornodes.

(enable-all HDL-obj ect)

To enable all the datanodes in the HDL structure one has to use this function.

lntelligen_ Grap/n'c Modeling Environmen_ 71

(disable-all HDL-object)

This function is for disabling all the datanodes in the network.

(eval-in-context HDL-object Expression)

The expression is evaluated in the context of the current HDL object.

context binds the symbols appearing in the declaration.

(hdl-init)

Initializes the HDL system. Must be called before any other function.

Note that the

4.5.6 Monitor

HDL is equipped with an interactive monitor program, which makes it possible for the user
to control the creation and execution of the structures. The monitor has several modes in

which the user can communicate with the system through menus and short commands.

The monitor can be started by calling the Lisp function:

(hdl-mon)

The function displays a menu with the following choices:

O) Exit

1) Cleanup

2) Load defs

3) List names

4) List def

5) Generate

6) Set env prior

7) Show hierarchy

8) Show current names

9) List current definition

11) Change focus

12) Control structure

13) Manipulate structure

14) Eval in current structure

The user should select a command by typing the corresponding number.

The commands are as follows:

• The "Exit" command returns to the Lisp top-level loop.

Intelligent Graphic Modeling Environment 72

The "Cleanup" dears the internal tables of the monitor, initializes MGK, and removes

all the definitions. It can be used for example if somebody wants to load in a new

definition file which contains definitions for previously defined things. This command

MUST be used before using any other facilities of the monitor.

The commands "Load dds", "List names", "List def" are for loading Lisp files,

listing the names of primitives and compotmds known to the system, and printing

out a declaration, respectively. File names should be specified as Lisp strings, while

names for declarations as Lisp symbols, t

The "Generation" command lets the user build an HDL structure. The necessary

things to be specified are: (1) the name of the top-level declaration, which has to

be a compound, (2) the initial values for the parameters, and (3) the names of tasks

and environments. _ Note that before generating anything, one has to load all the
declarations which are needed.

• The "Set env prior" command lets the user change the priority of an environment.
The users is asked to enter a line of the form:

Environmentname Integer

• The "Show hierarchy" command displays the tree of HDL objects. The tabulation

shows how the structures are nested.

The monitor uses the concept of focus: it means the HDL object, what is currently

accessible to the monitor commands. Initially the focus points to the root point of

the HDL object tree, but the user can change this. The focus also provides a lexical

context, in which things are to be looked up. Because things can be called by the

same name on different levels of the hierarchy, the context provided by the focus is

essential.

The "Show current names" command lists the symbols meaningful in the context of

the focus, while "List current definition" prints the S-expression of the declaration

which describes the focus.

To change the focus one can walk up and down the hierarchy, using the "Change

focus" command. The command shows the hierarchy, with an arrow where the focus

is. Then the user is asked to enter a command, which can be a number or a letter.

If it is a number, say "n", then it means the n-th subcomponent of the focus. (The

numbering starts from zero.) The following letters are interpreted:

- ?: Help

1Note that in the latter case sometimes the vertical bar should surround the symbol.

2HDL uses a task representation package, and for the top--level of the builder the task and environment
names have to be specified.

Intelligent Graphic Modeling Environment 73

- ^ : One level up

- r : Redraw hierarchy

- q : Quit this command

This way one can access arbitrary components in the hierarchy by navigating in the

tree of HDL objects.

Before running an experiment certain MGK commands should be executed on the

actor and datanodes of the system. This can be done using the "Control struc-

ture", which lets the user activate/deactivate (enable/disable) the actor (data) nodes.

These actions take place in the object identified by the focus, i.e. in the subtree,

where the root is the focused object. The commands are as follows:

- "a": Activate actornodes

- "e": Enable datanodes

- "d": Deactivate actornodes

- "b": Disable (block) datanodes

- "q": Quit this command

• When the components of the network are enabled and activated the system is ready

for execution and run-time manipulation. The command "Manipulate structure"

starts a command line interpreter, through which the user can handle the structure.

The following commands are known:

- r Signalname

Read the value of the signal object (datanode) and print it.

- o Signalname

Obtain (i.e.force out) the value of the signalobject and print it.

- w Signalname Value

Write a new value into the signal object. Value is evaluated by the Lisp inter-

preter.

- g Parametername

Get the value of the named control parameter and print it.

- s Parametername Value

Set the value of the control parameter, Value is evaluated.

- q

Quit this command.

Note that all these commands are evaluated in the context of the focus, i.e. signal

names should denote signal objects in the current context.

Intelligent Graphic Modeling Environment 74

• The "Eva] in current structure" starts up a read-eval-print loop, which evaluates

the expression typed in the current context. If the expression is an empty line, it

returns to the menu. If an error is detected during evaluation, the main top-level

comes back, from which one can go back to the monitor by restarting it using the

"(hdl-mon)" command.

4.5.7 An example

;;;

;;; Ouite complex example for hdl using Lisp

;;;

(defprimitive Random :Ifany

(Start -> Out) (Length) ()

(Env) (Task) Icon Picture

(let ((res (make-array (list Length))))

(Receive Start)

(dotimes (i Length)

(setf (svref res i) (random 1.0)))

(propagate Out res)))

(defprimitive Ramp :Ifany

(Start -> Out) (Length) (Offset Slope)

(Env) (Task) Icon Picture

(let ((res (make-array (list Length)))

(tmp Offset))

(Receive Start)

(dotimes (i Length)

(setf (svref res i) tmp)

(setf tmp (+ tmp Slope)))

(propagate Out res)))

(defprimitive Mult :Ifall

(Inl In2 -> Out) (Length) ()

(Env) (Task) Icon Picture

(let ((inl (Receive Inl))

(in2 (Receive In2))

(res (make-array (list Length))))

(dotimes (i Length)

(setf (svref res i)

(* (svref inl i) (svref in2 i))))

Intelligent Graphic Modeling Environment 75

(propagate Out res)))

(defprimitive Fft :Ifall

(Realin Imagin -> Realout Imagout)

(Leng_ch) ()

(Env) (Task) Icon Picture

;;; Code for FFT has been omitted

)

(defcompound Generator

(Start -> Result) (Length) (Offset Slope)

(Env) (Task) Icon Picture

(signals Rampsignal Rndsignal)

(struct

(Rmp-gen

(Ramp (Start -> Rampsignal)

(Length) (Offset Slope)

(Env) (Task)))

(Rnd-gen

(Random (Start -> Rndsignal)

(Length) ()

(Env) (Task)))
(Mul

(Mult (Rampsignal Rndsignal -> Result)

(Length) () (Env) (Task)))))

(defprimitive Printer :Ifall (Real Imag)

(Length) ()

(Env) (Task) Icon Picture

(let ((rbuf (Receive Real))

(ibuf (Receive Imag)))

(format t " Printer "_")

(dotimes (i Length)

(format t "R-'S : "S'_" i (svref rbuf i)))

(terpri)

(dotimes (i Length)

(format t "I-'S : "S'_" i (svref ibuf i)))

(terpri)))

(defcompound Test (Start ->)

(Length) (Offset Slope)

(Env) (Task) Icon Picture

Intelligent Graphic Modeling Environment 76

(signals Rsignal Isignal Rfreq Ifreq)

(struct

(Real-gen

(Generator

(Start -> Rsignal)

(Length) (Offset Slope) (Env) (Task)))

(Imag-gen

(Generator

(Start -> Isignal)

(Length) (Offset Slope) (Env) (Task)))

(Fft-op

(Fft (Rsignal Isignal -> Rfreq Ifreq)

(Length) () (Env) (Task)))

(Print-it

(Printer (Rfreq Ifreq)

(Length) () (Env) (Task)))))

4.6 Interfacing of HDL to Agent

The Agent package has a command interface which can be used by another testbed com-

ponent like HDL. The general technique of the interfacing is the use of pipes, which are

supported by the workstation's operating system. The knowledge-based component starts

up the graphical simulation package and establishes communication with it using the pipes.

The pipes look like files for the knowledge-based component, where it can write into and

read data back from.

The following two low-level Lisp functions are provided:

(popen "programname")

Starts up the program called "prograname" (typically: \verb"agent"+), and builds

a pipe connection to it. The function returns a two-way stream which can be used for

input/output in the Lisp program, whatever is written into the stream will be sent to

the started program's standard input, and whatever is sent to the standard output of the

program can be read from the stream.

(pclose pipe)

Closes the pipe connection to the running program. Note that the user must force the

(agent) program to exit before closing the connection (by, e.g. sending an exit command).

These two low-level functions supply the interface for starting the graphical simulation

and interfacing it to the knowledge-based layer. Using standard IO facilities arbitrarily

complex communication schemes can be built, for example: a HDL script can send control

commands to the graphical simulation and receive back position data, etc. In the next

chapter we show an example system which was built using a communication scheme.

Chapter 5

Case Studies

The modeling methodologies and tools described in the previous chapters provide a usable

working environment for testing automation concepts regarding space applications. This

chapter describes some of this work. First a structural, geometric model of the Space

Station is presented, which was prepared using the graphical modeling techniques of the

previous chapters. Next, another modeling efforts are described which combine this graph-

ical model with knowledge-based techniques to simulate various operational aspects of the

Station. Part of this work was the modeling of the Space Station Environment Control

and Life Support System (ECLSS) which was performed using the symbolic modeling

techniques introduced in the previous chapter.

5.1 Space Station Modeling Using ROBOSIM

In the last three years, ROBOSIM has been applied in numerous occasions to develop and

study real-time models of industrial manipulators. It's use, however, was not limited to

robotics only. Recently, ROBOSIM was put to use to support a sequenced build-up of the

space station model. The porting of ROBOSIM to a real-time graphics workstation, the HP

350SRX, with it's 3D graphics capabilities, knobs and menus served as a more interactive

and user-friendly tool which allowed for superior illustration and detailed examination of

different parts of the space station model.

In designing the space station, just like in designing a robot, the selection of the

robot's kinematic design is usually considered first. The number of robot joints, type of

joints(rotational, sliding or fixed) and the physical configuration are all important factors

of the robot's kinematic design.

After careful analysis of NASA's latest configuration of the space station model (SS, for

short) and knowing ROBOSIM's capability of handling multiple number of manipulators

within the same working plane, a modular approach was chosen to construct the SS model.

The SS model was broken in to several independent, serially linked manipulator models,

all assigned the same reference frame. Each manipulator consisted of separate parts, where

each part was built as a compound object made of primitives, such as boxes,spheres,

77

Case Studies 78

cylinders and user-defined shapes. These parts were then assigned the correct kinematic

parameters and mass properties and finally assembeled together using ROBOSIM.

The modular approach was a necessary approach as well as a practical one. It was

necessary, because it helped overcome the problem of serial-linlmge, usually associated

with robotic simulation packages, where a movement in one link will cause a movement in

the next.

Breaking down the model into separate independent manipulators, helped overcome

this obstacle. For example, each set of the solar panel assemblies could now be adjusted

and controlled independently of the other set. The modular approach is also practical

because it allowed for complicated models to be created in smaller parts and assembled

as the designer required. Changes could then be made to any component of the model

without affecting other parts. New parts or manipulators could also be added just as easy

without affecting any of the existing models.

The SS model was broken into five independent, serially linked manipulators, with each

manipulator representing a desired set of rotations and/or translations. These models were

represented as follows:

• Two solar panel structures (Fig 5.1 and Fig 5.2), each of which is treated as a sep-

arate manipulator attached to the side of the main truss assembly. Since both solar

panel structures were physically identical, only one structure had to be constructed.

The other was simply replicated, but assigned different kinematic properties. This

feature of ROBOSIM helped save time and effort, since structures can be saved in a

file for later usage.

• Two identical sets of solar panels, heat radiator and truss assemblies, each

treated as an independent manipulator. These assemblies attach to both ends of the

middle truss assembly. Each assembly has two rotational movements. One for the

solar panels, to position them in a direction facing the sun, the other for the whole

assembly structure to be able to position the heat radiators away from the sun.

• Mobile servicing robot, with five rotational joints, sliding on a set of rails to be

attached to middle truss assembly (Fig 5.3). The robot was modeled as a six degree

of freedom manipulator, with the sliding rails serving as a translational joint. The

robot is used to perform routine tasks, e.g., inspection and maintenance.

• Finally, the middle truss assembly was built. It included crew living modules,

antennas and truss assemblies all attached together to create the main body, to

which all other sub-models attach (Fig 5.4). A common frame, to which all other

manipulator models refer, was assigned at the middle of this truss assembly.

• For easier debugging, this final structure was broken into three parts: Crew-living

modules, antennas and trusses. A set of two non-shaded, user-defined cubes

were built and propagated, using temporary storage registers, to construct the truss

assembly. This illustrates ROBOSIM's ability to create user-defined shaded and

non-shaded objects as parts of the same model.

.,-UL.,..r,,""""" _'l-_.'..J0_ _r_n

Case Studies 79

Figure 5.1: Solar panels - I.

With the links of all five models being defined and a common reference frame assigned,

the graphics display program was used to assemble the different parts, in a pre-assigned

configuration, to generate the desired SS model (Fig 5.5) The menu box, top right of the

screen, provides various options with which the user can interactively view and control

separate parts of the model.

Separate routines could also be linked to the Graphics display program to assign joint

limitations and/or set motion along any parametrically defned functions. Two sets of

predefined motion for the main solar panel assemblies is shown in Fig 5.6.

5.2 Operational Modeling of the Space Station

Space Station automation requires the analysis of the complex material, energy and infor-

mation transfer processes from many different aspects. The structural model introduced

previously is just a representation of one of these aspects, but to cover the fixll range of

Case Studies 8O

Figure 5.2: Solar panels - II.

Case S_udies 81

Figure 5.3: Servicing Robot

Case Studies 82

Figure 5.4: Middle truss assembly

M

Case Studies 83

Figure 5.5: Space Station Model

Case Studies 84

Figure 5.6: Solar Panel Motion

Case Studies 85

possible operations, it has to be combined with other models representing the different

aspects and using different modeling techniques. The integrated modeling environment

which was the subjects of the previous parts of this report offers a unique opportunity to

do this. Below we list a couple of the problems which are well suited for this approach.

Attitude Control System and its Dependencies: The Space Station is a large

structure, which due to the different disturbing effects (solar wind, etc..) requires a con-'

stant control of its attitude. This is done by a triple gimbaled gyrator system (according

to the plans). The structural model of the station together with the (already existing and

newly developed) elements of the Simulation Library could provide a toolkit to test the

orbital mechanics and the attitude control problems related to the station.

But this is just one of the aspects of the attitude control problem! The Space Station is

a relatively small closed system, so everything influences everything. Normally the triple

gimbaled gyroscopic attitude control system is sufficient to control the orientation of the

Station. But during the course of the operation, the rotational angles of gyroscopic wheels

might reach a position whereCthey align with each other - which means that the system

is not capable of control any more. In such cases the gyroscopes must be 'recharged' i.e.

their angles of rotation made (approximately) perpendicular again. This of course will

offset the orientation of the Station which then must be corrected using thrusters. It is

expected that this operation will have to be performed at about every tenth orbit. There

are several constraints which influence this:

This 'recharging' operation might disturb some ongoing low-gravity experiments (be-

cause it introduces relatively high accelerations), so these have to be considered when

scheduling it.

There are other orbital maneuvers which affect the attitude control (docking or

launch of objects). A higher-level controller which schedules the recharging activities

of the attitude control system must know about these events too.

While the Station is on the 'sunny' side of the Earth, the photelectric cells should

be operating at the possible highest capacity. If the sudden changes in the station's

orientation can not be followed by the control system of the panels then the en-

ergy production might suffer. On the other hand the operation of the solar panel's

alignment mechanism itself influences the attitude control system.

The Electrical Energy Production and Distribution System itself is an inter-

esting area of study, due to the limited energy supply and the interactions between the

different consumers. Some of the problems in this area are:

• A control system must be developed which utilizes the periods while the Sun is visible

most efficiently by aligning the solar panels as close to perpendicular to the Sun as

possible. We have already begun developing a model for such a control system for

this purpose utilizing the structural model of the Station and some of the higher-level

symbolic tools introduced previously.

Case S_udies 86

A higher-level controller of this subsystem must predict the future energy production

(interactions with attitude control and other orbital operations!), and based on the

reserve energy and projected production must schedule the operation of the different

consunmers. This seems to be a task to be solved using knowledge-based techniques,

possibly by using the modeling techniques of Chapter 4 to simulate the different

constLmer8.

There are vital subsystems on the Station whose energy demands must be satisfied.

An example of these is the Environment Control and Life Support System (ECLSS).

Beside being a very important energy consumer, ECLSS is also a big energy con-

sumer. If it is predicted that ECLSS's energy demands can not be met, the whole

operation of the Station may have to be rescheduled. Actually ECLSS itself is a

set of interrelated subprocesses, some of which are not as important as the others.

For example in the case of an energy shortage the air control subsystems for the

experiment modules might operate at a reduced capacity, while it is not true for

the crew modules. Such a decision will result in having to stop some of the ongoing

experiments. But this again is just one of the possible interrelations.

A common characteristics of the above examples is that modeling them requires con-

sidering many aspects of their operation. Some of these aspects can be expressed in

quantitative terms, while others only in qualitative ones. This fact is the best justification

for an integrated automation simulation and modeling testbed, containing (1) geometric,

graphical modeling tools for spatial modeling of the different systems of the Station (e.g.

ROBOSIM), (2) a model-based programming environment for creating deep, structural,

knowledge-based models for adaptive control and failure analysis (e.g. MULTIGRAPH).

5.3 Study of the Space Station ECLSS

One of the most important systems of the Space Station is the Environment Control and

Life Support System (ECLSS). This is a vastly complicated system with many interacting

subsystems. Design of low-level control systems for these subsystems is based on modeling

the process dynamics. Development of a diagnostic system requires the elaboration of

sophisticated fault models, and the construction of the operator interface is closely related

to various qualitative models of the subsystems. The analysts can develop these models of

different levels of abstractions, and can apply them for a particular purpose.

Due to the difficulty of these problems, the support of modeling is of paramount im-

portance in a simulation testbed for automation. The purpose of this case study was

twofold: (1) to demonstrate the use of a multiple-aspect modeling technique in analyzing

the diagnosability of the ECLSS, and (2) to demonstrate the integration of structural,

geometrical modeling with the knowledge-based components and diagnostics system. This

latter demonstration has produced an integrated system fault diagnosis and repair actions

are tightly coupled. The study was being conducted in close cooperation with the Boeing

Aerospace Company, Huntsville, A1.

Case S_udies 87

5.3.1 Objectives of the ECLSS study

ECLSS is a large system comprising complex material, energy and information transfer

processes. The primary tool for the design and operation of the system is extensive mod-

eling. The models help to understand the ECLSS in the design phase, and they are the

key components of the monitoring, diagnostics and control system in operation time.

From a methodological point of view, we consider the ECLSS design process as an

incremental model building activity, in which various system components are defined in

terms of specific models. The design is successful if the individual models are correct, and

if the various models are consistent with each other. If the progress in the design process

is represented in the form of a set of formal models (quantitative and qualitative), the

intermediate results can be tested and validated by using the following techniques:

• The consistency of the models of different levels of abstraction can be tested by using

mapping rules among the modeling aspects.

• The models can be used for the generation of quantitative/qualitative simulations of

the system, in order to test its expected behavior from a selected aspect.

• The performance of specific subsystems (e.g. diagnostics, or control) can be tested
in a simulated environment.

AI provides a rich selection of modeling techniques that can support this process.

Knowledge representation techniques can be developed to describe qualitative and quan-

titative features of systems. These representations can be used to test the correctness of

the individual models, to check the consistency among the related modeling aspects, and

to analyse different features of the system designed.

The objective of the study was to test the integration of real-time fault diagnostics with

a fault recovery facility for the ECLSS Potable Water unit. The specific objectives were

the following:

Multiple-aspect modeling of ECLSS Potable Water Unit. The models define the

energy, material and information processes in the system in a hierarchically organized

way. These models include the Hierarehleai Process Models (HPM) which serve

as the dominant modeling aspect for the study. HPM provides the context for

other, dependent modeling aspects. The structure of the physical processes in

ECLSS are modeled by using the graphic/declarative modeling techniques of MPE.

Hierarchical Fault Models (HFM) of EC£SS Potable Water Unit. The fault models

specify fault modes and fault propagation paths. The structure of the fault

models corresponds to the structure of the process models, since faults can propagate

only through physical interactions that are expressed in the process models. The

multiple aspect modeling methodology of MPE ensures the consistency between

the process models and the fault models.

Case Studies 88

Integration of fault recovery mechanisms into the models. Whenever the fault di-

agnostics detected a fault and identified the fault source, it should trigger a fault

recovery action. The fault recovery mechanism, in this demonstration, is coupled to

a robot system, which performs the necessary repair action(s). The robot system

earl be driven (1) directly via commands incorporated in the models, or (2) indi-

rectly via commands generated by a high-level robot planner. The robot itself can

be a (1) physical robot, or a (2) simulated robot. In the demonstration described

below we have used direct commands to drive a simulated robot created using the

Robosim environment described in the previous chapter. In a system created at Boe-

ing Aerospace an actual physical robot was controlled by using a high-level planner
system.

Although, the study is limited to the issues of integration of diagnostics with automated

fault recovery, we can easily expand the system later with other modeling aspects, such

as modeling the monitoring system, operator interface, control system, etc. By using the

automatic program generator services of MPE, the models can be used for generating an

executable version of these sub-systems.

5.3.2 Model-based diagnostic system

In this ECLSS study we have used a sophisticated model-based diagnostic system, which

applies a hierarchically organized fault propagation model. In this section we summarize

the properties of the diagnostic system and discuss the specification of the fault model.

A real-time fault detection and diagnosis capability is absolutely crucial in large-scale

space systems. Some of the existing AI-based fault diagnostic techniques like expert sys-

tems and qualitative modeling are frequently ill-suited for this purpose. Expert systems

are often inadequately structured, difficult to validate and suffer from knowledge acquisi-

tion bottlenecks. Qualitative modeling techniques often generate a large number of failure

source alternatives, thus hampering the speed of the diagnosis.

A Hierarchical Fault Model of the system to be diagnosed was developed. At each level

of hierarchy, there existed fault propagation digraphs denoting causal relations between

failure-modes of subsystems. The edges of such a digraph were weighted with fault prop-

agation probabilities and fault propagation time intervals. Efficient and restartable graph

algorithms were used for on-line, fast identification of failure source components.

A real-time fault diagnostics system has to function in an environment where new

alarms may constantly be generated, due to the propagation of failures. To cope with such

a time-changing scenario the diagnostics system must have the following characteristics:

• Signal Processing, Alarm Generation and Failure Source Identification software must

be as fast as possible. The first two are usually standard well-defined and analyzed

algorithms, and hence, virtually all speed improvements have to be achieved in the

failure source identification phase.

Case Studies 89

Q The diagnosed results must be updated as time elapses and new alarm information

is received. These results must be accurate but need not have a fine resolution. This

implies that in the early stages of diagnosis a large component such as the Potable

Water Assembly can be identified as the fault source. The resolution of this fault

source is further refined with the passage of time and additional alarm information

to a unique component inside the Potable Water Assembly.

The User-Interface must present the current status of diagnosis in a comprehendible

manner, reflecting the level and the granularity of the system under diagnosis, at

which the diagnostics system is operating.

The basic philosophy of the graph-based approach is based upon multiple-aspect mod-

eling. The system under consideration is hierarchically decomposed from many aspects

in order to yield a set of different models. The functional decomposition leads to the

Hierarchical Process Model (HPM) and a structural decomposition leads to a Hierarchical

Physical Component Model (HPCM). A Hierarchical Fault Model (HFM) is developed in
the context of HPM with links to the HPCM.

The technique of hierarchical decomposition is widely used during model building for

the following reasons:

, Design, knowledge acquisition, and knowledge-base maintenance of large complex

systems becomes structured and easier.

Running the same graph algorithms on smaller number of nodes many times takes

lesser time than running them on the entire set of nodes in a system. For example

it takes a longer time to run an O(n) algorithm on a graph with 200,000 nodes than

it takes to run the same algorithm 200 times on a graph with 100 nodes.

• It is possible to conduct the search for the failure source on the HFM in a parallel

manner, thus enabling speedy diagnosis.

In most cases a large granularity component assembly can be identified as a failure

source at an early stage, and then the search needs to proceed only in that compo-

nent's part of the model.

A process in the HPM can be thought of as a functional unit carrying out a specific

function in the system, by utilizing different physical components. Different processes on

the same level may interact with each other through shared physical components. Processes

in the HPM can be associated with many different components in the HPCM as shown in

FigureS.7. In the context of each process the following are acquired:

• Process Failure-Modes.

• Process Alarms and alarm-generators. The alarm-generators accept sensor inputs

and if needed, generate the appropriate alarm.

Case Studies 90

PLANT

CONTROLLER REACTION PUMP

HEATING

CONTROL

FUEL

ASSEMBLY

STO RA G E

ASSEMBLY

REACTOR

Figure 5.7: A Hierarchical Process Model

Case Studies 91

AND-NODE

FAILURE-MODE

Failure
81ate [P, Train, Tmax]

COMPONENT

[P, Tmin, Tmax]

ALARM

Figure 5.8: Fault Propagation Digraph of a Process

• Alarm Failure-Mode associations.

• Failure-Mode Physical Component associations.

Each process in the the HPM has its fault model, therefore fault models are considered

to be dependent aspects to the process models. This model is determined by the failure-

modes of the process, and if present, the failure-modes of its subprocesses. All these failure-

modes form nodes of a fault propagation digraph, with directed edges between individual

failure-modes signifying a fault propagation possibility. Each edge in this graph is weighted

with two parameters a fault propagation probability and a fault propagation time interval

in terms of a minimum and a maximum. The fault propagation digraph of a process on

level i is shown in Figure 5.8. The collection of all such fault propagation digraphs and

failure-mode physical components associations results in the HFM. It is possible to extract

the basic structure of the fault propagation digraph from the process models, since most

faults can only propagate along physical connections.

Case Studies 92

5.4 ECLSS Study: Diagnostics and Repair

The information for the ECLSS models was acquired from BAC design engineers. The

main steps of the study were the following:

• Definition and refinement of the HPM and HFM for the ECLSS.

Derivation of a real-time alarm pattern simulator from the HFM. The alarm pattern

simulator generates alarm sequences from the HFM by using the fault propagation
information in the models.

Determination of the repair actions for Potable Water Unit. Repair actions are

associated with physical component failures: i.e. both the component and its failure

state together determine the kind of repair action to be taken.

5.4.1 Process and Fault Modeling for the ECLSS

The starting point for this case study was an informal description of the ECLSS Potable

Water Processing functionality in terms of layered process component drawings and a fault

diagnosis handbook indicating possible faults of the system or of its subcomponents. The

main goal was to show a snapshot of how the ECLSS/PWU is represented and how our

technology could be used to obtain problem representations, applicable for a variety of

tasks including fault diagnosis.

5.4.2 Hierarchical Process Model (HPM) of the ECLSS

The first step is to obtain a functional decomposition of the system. The decomposition,

naturally, should not follow the physical layout but rather the functional layout. The

stepwise refinement of the ECLSS Potable Water Processing leads to the process hierarchy

tree shown in Figure 5.9. Each node represents a certain function in the system. Each

function maps the specified input process variables to the specified output process variables.

Process variable dependencies in the hierarchy are possible only between parent and son

nodes or between sibling nodes. The dependencies are denoted by (directed) edges, called

connections. Connections typically describe a material flow.

In the following, the process hierarchy is described in more detail. The top level process

is the Proce_Jing-of-Water process. The functional decomposition of the ECLSS/PWU

system consists of three subprocesses:

• Pumping

• Filtration

• Distribution

• Testing

CaseStudies 93

ECLSS

Air Control

Ventilation

CO 2 Removal CO e Reduction

Potable Water

/
Pumping Diatrib. Control

H _giene

//
Crew

Filtration Testing Circulation

/
Waste Water

Supply

/_Urine Proc.

Hygiene

U!'r"/\Walte Water
Collector

Vapor Addition

Figure 5.9: Process Hierarchy of the ECLSS

Case Studies 94

* Control

The physical structure of this process includes two rows of ea_ 4 tanks. At a specific

time each tank has a certain unique functionality as collection, storage, or supply. While

one of the tank rows is collecting the potable water from the one process the other row is

processing the water. Whenever one tank is full the tanks will switch their functionality

i.e tested water can be used.

For the functionality of the potable water processing it is not important which tank is

used for the filtration or for the water testing. This leads to the fact that on this level of

decomposition the physical layout is completely ignored. However the physical layout is

important for the entire model and can be modeled as a different view of the system.

5.4.3 Declarative Form of the HPM

The MPE facilitates the modeling process by a graphical editor. The use of graphic editors

helps to avoid errors and increases the visibility of the system structure. For further use

of the process model a more formalized representation has to be generated. This is done

automatically by our system. Figure 5.10 shows the declarative form of the air control

process. The declarative form contains all the necessary information to reconstruct the

model and the graphical presentation of it. Furthermore the declarative form can be

extended to carry more information about different views of the system like the fault

modeling aspect.

In a leaf in the process hierarchy only the input and output signals are specified. The

graphical editor allows, at any time, extension of the process model to greater detail or

modification of a process as long as the interface to process remains the same or is extended.

Various popup menus allow the user to specify new signals, subprocesses and connections

between them. In order to represent subprocesses graphically the user can use a bit map

editor to create an icon for a specific process. Each icon also contains a connection point

for each input and output signal in order to enable the user to specify connections to and

from those signals on a higher level.

5.4.4 Hierarchical Fault Models (HFM) for the ECLSS/PWP

Once the process model is defined, different views of the processes can be studied and

modeled. In this section we are considering a fault model for the ECLSS. We would like

to emphasize that the fault specification is incomplete and needs further refinements.

The construction of a fault model is performed the same way as that of a process

model, namely using an appropriate graphical editor. Each fault model is represented on

the higher level of the hierarchy by an icon where each icon has several connection points

related to the failure modes of the subprocess. An important aspect of fault modeling is

its close relationship to the process models. When a fault model for a process is to be

defined, the fault model will inherit the basic structure from the HPM: (1) the name of the

subprocesses, and (2) the causal links among the the subprocesses which is derived from

ORi'SiNAL i:::_ : 2

OF POOR QUALITY

Case Studies
95

Figure 5.10: Declarative form of the AirControl Process

ORIGINAL PAGE IS
OF POOR QUALITY

Case S_udies 96

the existence of physical links. This relationship guarantees that the HPM and HFM will

be consistent.

In the following, some of the failure modes and their relationships will be explained.It

does not have any failure modes but defines possible relationships of failure modes of its

submodels.

As mentioned earlier the fault model is one aspect of a process model besides the

structural view. Therefore the fault model is also stored in the declarative form of the

process model. This is shown in Figure 5.11 for the toplevel process. The declarative form

holds structural and fault model information about the process in different view slots,

which are both accessed by the diagnosis system.

5.4.5 Definition of repair actions

The most obvious place for incorporating repair action definitions is the HPCM, where

the physical components are enumerated together with their fault modes. Unfortunately,

repair actions cannot be incorporated into HPCM for the following reasons: HPCM is built

incrementally, and each declaration describes a physical component type, and not a real,

component instance. For this reason we have chosen a different method.

If we want to coupld the physical component hierarchy to the structui'al, geometrical

simulation, we need to solve two problems:

1. Identification of geometrical structures with abstract physical components in the

HPCM.

2. Assignment of repair actions to physical component nodes in the HPCM.

The most plausible way for identifying an object (a node) in a hierarchy is the describe

the path which leads to it, starting from the toplevel. We have used this method the

following way: To identify the physical component with a geometrical object we introduced

the following declaration:

(def-physical-names

{({PathToPhysicalComponent} GeometricalObjectName)

)

}*

The PathToPhysicalComponent is a list of symbols which lead to the desired physical

component in the hierarchy, while Geometric0bj ectName is a name from the geometrical

modeling environment. (It is usually an argument in one of the make-object commands,

described above.)

To facilitate the assignment of repair actions to physical components, the following

declaration can be used:

(def-repair-actions

{({PathToPhysicalComponent} RepairActionString) }*

)

OF POOR QUALITY

Case St u dies 97

Figure 5.11: Fault Diagnosis Declarative Form

Case Studies 98

Its is similar to the previous declaration, but RepairActionString denotes the repair

action to be executed when the diagnostics initiates a fault recovery.

5.4.6 Integrated monitoring and diagnostics with robot simula-

tion

After completing the HPM and HFM for the ECLSS/PWP, we prepared a demonstration

which integrated the monitoring and diagnostics system (built using MPE) with the ge-

ometrical modeling environment. The integration was realized with the help of pipes, a

standard Unix interprocess communication facility.

The integrated system works the following way: The monitoring and diagnostics system

is loaded with the symbolic model sets of the ECLSS/PWP. The model set also contains the

physical component/geometrical object associations, as well as the definitions of various

repair actions. The repair actions axe simply the names of command files, executable by

the geometric modeler. When the monitoring a diagnostics system is built up, it starts the

geometric modeling environment (which is just another Unix program), and initializes it

to show the starting configuration of the ECLSS/PWP. A fault-simulation (an automatic

scenario generator) is also created, which is responsible for creating alarm sequences for

exercising the diagnostic system. The operator can select a physical component for fault,

and the program starts generating the alarm sequence which corresponds to the one in

a real-life system. The diagnostics system analyzes the alarms and tries to pinpoint the

fault source: a physical component. When it found one it indicates that by coloring the

corresponding component button on the operator panel of the diagnostics to red, and by

coloring the corresponding geometrical objec_ to red. Finally, if there is an associated

repair action defined, it sends the commands of it to the geometric modeler for execution.

The robot simulator then shows the execution of the repair action, as a three-dimensional

animation. (See Fig 5.12.)

ORIGINAL PAGE

COLOR PHOTOGRAPH

Case Studies 99

Figure 5.12: Integrated 3D models and fault monitoring/repair system

Chapter 6

Suggestions for Future Work

During this project we have obtained experiences with the potential of a graphic work-

station environment in robot simulation and have tested the new capabilities of the AI

extension of ROBOSIM. The research has been conducted in three parallel directions:

• Improvement of the basic capabilities of ROBOSIM by taking advantage of the

graphic workstation environment.

• Integration of ROBOSIM with model-based modeling techniques and extension of the

capabilities of the basic system with support toward general automation problems.

• Continuous testing of the system with a variety of application problems.

The results of the project can be summarized as follows:

• ROBOSIM is available now on different graphics workstations, including HP 9000

Series and Intergraph.

• ROBOSIM has been extended with:

- Collision detection

- 3D model editing facilities

• An extended modeling environment (Agent) has been built using ROBOSIM: it is

upward compatible with the new package.

• The graphical modeling environment has been coupled with a model-based system

for describing and simulating robot controllers.

Case studies have been performed using the tools developed in this project. The

studies include: (1) geometrical modeling of the Space Station, (2) process modeling

of the Environmental Control and Life Support System, which make possible inte-

grated fault diagnostics and fault recovery, the latter being simulated using the 3D

graphical robot simulation package.

100

Suggestions [or Fut ure Work 101

There are many directions in which this research can be extended.

3D graphical editing tools. ROBOSIM has a rudimentary facility for creating robots

and geometrical structures interaetively, and it can be extended into a sophisticated

tool for editing 3D models. It is a very interesting and promising research area:

currently there axe no (commercial) systems which support 3D editing. The poten-

tial benefit of this project would be the development of user interface methods for

interactive 3D manipulation.

• ROBOSlM/CAD interface. There are many eases when ROBOSIM must use geo-

metrical models available in another environment, e.g. an engineering CAD system.

This system would serve as a generic interface between the ROBOSIM modeling

language and CAD systems, so that the 3D models of a CAD system can be incor-

porated into robot simulations automatically. The result of this research would be a

translator program which converts CAD files into ROBOSIM models.

ROBOSIM/CLIPS interface. NASA is widely using the expert system shell CLIPS.

It would be very advantageous to provide a communication mechanism between

ROBOSIM and CLIPS, and make possible the integration of robot simulations with

CLIPS-based applications. Robot planning systems can easily be implemented in

CLIPS and an integration of ROBOSIM with CLIPS would make possible to extend

already existing CLIPS applications with a 3D graphics output facility.

Integrated modeling environment for automation 8ystema. Currently, ROBOSIM is

used for geometrical modeling and there are other symbolic tools for creating abstract

process models, etc. An integrated environment would contain both models in one

integrated formalisms. This would facilitate a more efficient representation, where

the abstract (logical) models and the concrete (geometrical) models of automation

systems can be stored together. An integrated modeling environment like this can

serve as an example system for a sophisticated automation development environment.

Appendix A

Structure Declarations for the

Simulation Library

This Appendix contains all structure declarations used throughout the code of the Sim-

ulation Library. The declarations are given using the conventions of the C programming

language, since the Simulation Library itself was coded in C.

typedef float (*S_VECTOR) [3] ;

struct s_penalty {

float pen_norm[3/;

float pen_dist ;

};

typedef struct s_poly {

float norm[3/;

float nd;

int vec_ptr;

int num_vectors;

struct s_penalty *pen;

} *S_POLY;

typedef struct s_link{

int hum_vectors;

S_VECTOR list_ptr;

float *md;

int display_list;

float bbc[4]; /*bounding box center*/

float bbd[4]; /*bounding box half-diagonal*/

float INERT[4/[4];

float CURR[4][4];

102

Structure Declarations for _he Simulation Library 103

int num_poly ;

S_POLY poly;

float theta,dz,da, alpha;

int jtypel,jtype2;

float JNTI[4] [4] ;

float JNT2[4] [4] ;

float AMAT [4] [4] ;

float TRANS[4] [4] ;

float curt_vat;

float min_var;

float max_var;

} *S_LINK;

struct s_robot{

int num_links ;

S_LINK link[18] ;

float Pre [4] [4] ;

float Post [4] [4] ;

float DH[18] [5] ;

int display_list ;

float POS[4] [4]; /*matrix describing position of robot in environ*/

int (*INV_KIN)(); /* pointer to function that solves inverse kin _/

};

struct s_env{

int num_vectors ;

S_VECTOR list_ptr ;

float *md;

int display_list ;

float bbc[4]; /*bounding box center*/

float bbd[4]; /*bounding box half-diagonal*/

float INERT[4] [4] ;

float pos[4] [4];

int num_poly ;

S_POLY poly;

};

/* this is a copy of s_env, however it is also the generic type */

/* of which link and obj can be cast into */

struct s_gen{

int hum_vectors;

S_VECTOR list_ptr;

Strucfure Declarations for the Simulation Library 104

};

float *md;

int display_list ;

float bbc[4]; /*bounding box center*/

float bbd[4]; /*bounding box half-diagonal*/

float INERT[4] [4] ;

float POS [4] [4] ;

int num_poly;

S_POLY poly;

struct s_obj {

int hum_vectors ;

S_VECTDR list_ptr;

float *md;

int display_list ;

float bbc[4]; /*bounding box center*/

float bbd[4]; /*bounding box half-diagonal*/

float INERT[4] [4] ;

float POS [4] [4] ;

int num_poly;

S_POLY poly;

float DIFF [4] [4] ;

};

typedef struct s_any {

int type; /* O=robot l=env 2=obj */

int in_use;

union {

struct s_robot *r;

struct s_env *e;

struct s_obj *o;

} obj ;

} ,S_ROBOT,*S_ENV,*S_0BJ;

typedef struct s_list {

struct s_any *item;

struct s_list *next;

} S_LIST;

typedef struct s_collision{

struct s_any *SI;

int L1;

Structure Declarations for the Simulation Library 105

struct s_any *$2;

int L2;

} S_COLLISION;

typedef float S_POINT[3]; /* X Y Z */

typedef float S_ORIENTATION[3]; /* ROLL PITCH YAW */

typedef float S_LOCATION[6]; /* X Y Z ROLL PITCH YAW */

S_ROBOT S_GET_ROBOT();

S_ENV S_GET_ENV();

S_OBJ S_GET_OBJ();

typedef float S_JOINT[18];

typedef float matrix3d[4][4];

struct matrix_struct {matrix3d msxform; };

#define S_REPLACE_MATRIX_3D(dest,src) \

*(struct matrix_struct *)(dest) = *(struct matrix_struct *)(src)

Appendix B

Simulation Library Functions

This Appendix contains the interface declarations to the functions of the Simulation Li-

brary. The declarations are given using the conventions of the C programming language,

since the Simulation Library itself was coded in C.

S_GET_ROBOT (filename)

char *filename;

S_GET_ENV (filename)

char *filename;

S_GET_OBJ (filename)

char *filename;

S_PRETRANSLATE (o,x,y,z)

S_ANY o;

float x,y,z;

S_POSTTRANSLATE (o,x,y,z)

S_ANY o;

float x,y,z;

S_PREROTATE (o,x,y,z)

S_ANY o;

float x,y,z;

S_POSTROTATE (o,x,y,z)

S_ANY o;

float x,y,z;

S_M0VEJ (r,joints)

106

Simulation Library Functions 107

S_ROBOT r;

S_JOINT joints;

S_CLEAR_JOINT (joints)

S_JOINT joints;

S_MOVEJI (r,joints,steps)

S_ROBOT r;

S_JOINT joints;

int steps;

S_USE (o)

S_ANY o;

S_DONTUSE (o)

S_ANY o;

S_CHECK (o)

S_ANY o;

S_CHECK_ROBOT (r)

S_ANY o;

S_C_SWITCH (x)

int x;

S_COLLIDE ()

S_SET_INV (r, inv_func_ptr)

S_ROBOT r;

int (*inv_func_ptr)();

S_KINV(r, dim, joints, reset)

S_ROBOT r;

float dlm[4][4];

S_JOINT join%s;

int reset;

S_JACOB(joints, jac)

S_JOINT joints;

float jac[6] [6];

Simulation Library Functions 108

s_translate (mat ,x,y,z)

float mat[4] [4] ,x,y,z;

s_rotate (mat,x,y,z)

float mat[4] [4] ,x,y,z;

s_rotatez (mat,z)

float mat [4] [4] ,z;

s_transpose (mat)

float mat [4] [4] ;

s_invert (mat)

float mat [4] [4] ;

Appendix C

HDL / C Interface

C.1 HDL/C Interface

C.l.1 HDL Parameters

In HDL there are two kinds of parameters available: static and dynamic. Static parameters

are determined at the time when the HDL declaration is instantiated and they don't

change their value. Static parameters are passed by value to HDL components. Dynamic

parameters are initialized at instantiation time, but they can change their value as the

Multigraph network is running. Dynamic parameters are passed by reference to HDL

components.

Both kind of parameters can have two attributes: (1) default value, and (2) type. At

editing time these can be specified using the "Modify" command of the graphical editor

and clicking on the appropriate parameter. The default value can be anything, but it must

be compatible with the type. There are four possible types for a parameter: (1) integer,

(2) float, (3) double, (4) pointer, and (5) lisp. In general, the type for parameters

must always be specified, the specification of default value is optional.

In HDL all the low-level algorithms should be embedded in primitive declarations which

specify a simple algorithm and its interfaces to the Multigraph network and the parameters.

An HDL primitive declaration has the following form:

(defprimitive

Name Discipline

Io_interface Parameter_interface Control_interface

Environment_interface Task_interface

Icon Picture

Body)

The Body component of the declaration can have one of the following format:

• Lisp expression. In this case it is considered as the body of the Lisp function which

implements the algorithm.

109

ttDL/ C /nterface 110

A string 1 which contains one name. In this case it is considered as the name of a C

function which implements the algorithm. The C function should be loaded explicitly

before the HDL interpreter processes the primitive declaration.

A string which starts with a { character and contains the C function body. It must

end with a }, as the syntax rules of C dictate. In this case the C function text is

embedded in the declaration, and the HDL interpreter will compile and load this C

text whenever the primitive is encountered for the first time.

In the subsequent sections the methods of script writing are reviewed.

C.1.2 HDL Context Tables

When the HDL interpreter is instantiating a primitive object it constructs a context table

from the actual parameter values of the object and according to the formal parameter

specification in the declaration.

The static parameters are always passed by values. Dynamic parameters are encap-

sulated in a special structure and this structure is passed to all primitives which refer to

the same parameter. If the dynamic parameter was specified of integer, float, double,

or pointer a Multigraph buffer 2 is created which is large enough to hold data and the

address of this block is passed. If the dynamic parameter is of lisp type a Lisp structure
is created which can hold the data.

The context table is built from static parameter values and dynamic parameter ref-

erences as follows. When the script of the primitive is a Lisp script it simply creates a

Lisp vector which contains first the static parameter values, then the references to the

Lisp objects keeping the dynamic parameters, in the order _hey appeared in the primitive

declaration. The HDL interpreter also builds macros for referring to input and output port

names and parameters by their name. These macros surround the Lisp script at execution

time, so the script can access its parameters by simply referring to them by name. It is

recommended that for Lisp scripts only parameters with type :lisp be used.

When the script is written in C the interpreter constructs a context table from the

values and references, in the order they appeared in the declaration. The interpreter then

passes the address of this table to the actornode which runs the script. C scripts can have

(static or dynamic) parameters with types integer, float, double, or pointer only.

Example: Suppose we have defined a primitive with the following static parameters:

(ITsl 0 :INT)

([Kp[0.0 :DOUBLE)

(lEd[0.0 :FLOAT)

(JEll 0.0 :POINTER)

and with the following dynamic parameters:

1Strings in Lisp are sequences of characters surrounded by double quotes: "
SAn MG buffer is a dynamically allocated block of raw memory.

HDL/C In terrace 111

([P_result[O.O :DOUBLE)

([P_error[O.O :DOUBLE)

([P_P_error[0.0 :DOUBLE)

The HDL interpreter will construct a context table which is equivalent to the following C

structure:

struct {

int Ts;

double Kp;

float Kd;

void *Ki;

double *P_result;

double *P_error;

double *P_P_error;

As it was mentioned above, there are two ways for referring to C scripts: (1) by

name (the "plain" method), and (2) by inserting the entire script in the declaration (the

"embedded" method). In the following section the methods for preparing these C scripts

are described.

C.1.3 Preparing and loading "Plain" C scripts

In the case of the plain method the declaration of the primitive contains only the name

of the C function which implements the script. In this case it is the user's responsibility

to create write, compile and load a C file which contains the script. The file can contain

many scripts, as well as other C functions used by those scripts. The file should have the

following general structure:

/* Include MGK extern functions and macros: */

#include "cmgkdefs.h"

/* Other includes */

o*.

/* Forward declaration of functions:

void UserFunctionIName();

,/

*ol

/* First mandatory declaration in the file: */

make_binder(init_name)

/* Bind user function "UserFunctionIName" */

bind(UserFunctionlName)

/* Bind user function "UserFunction2Name" */

bind(UserFunction2Name)

ttDL/C Interface 112

/* Other bindings: */

I.o

end_bind(Initialization)

/* Usual C code comes here */

eee

void UserFunctionlName(cntx)

struct { ... } *cntx;

{
• • •

}

The file "cmgkdefs.h" contains the MGK macros (see [2]) necessary for correct com-

pilation of the file. The "substantial" part of the file has to begin with the mandatory

make_binder, bind, end_bind construct. These are three C macros which together gener-
ate a special C function that initializes the internal tables of MGK when the file is loaded

into the MGK run-time environment. The name of this C function is init_name, what

the user should specify.

The user functions to be used as scripts for HDL primitives should be placed into the

internal tables of MGK by using the bind macro: the name of the C function must be

the only argument for this macro. Note that for C the function name should be forward

declared before referring to it. The end_bind macro closes the start_bind construct; the

user can specify optional initialization code here as the argument for the end_bind macro.

If there is nothing to be initialized, the macro should be called with an empty argument

list (i.e. with "()").

Once the C file is prepared it must be compiled as follows:

ca -IMGKDIR -c file.c

echo '#()' [cat >>file.o

MGKDIR should specify the directory where the "cmgkdefs.h" file is to be found (if it is not

the current directory). The second command line appends a special marker to the end of

the file for the KCL loader. It is not necessary for all the C scripts to be stored in one file,

but there must be one and only one file that contains the start_bind macros as above.

The other files should be compiled using the usual method of C compilation for creating a

C relocatable object file 3

Once the files are compiled they must be loaded into the KCL/HDL environment.

Suppose the main C file is called foo. o, there are two auxiliary files bar. o and baz. o, and

we also want to load the math library of C. There are two equivalent ways of doing this:

• Using the KCL "faslink" feature:

3Use the -c flag.

HDL/C/n t er/ace 113

(si:faslink "foo.o" "bar.o baz.o -Ira")

• Using the MGK loader:

(load-modules "foo.o" :linkeropts "bar.o baz.o -Ira")

In both cases it is supposed that MGK has been initialized, and in the second case that

the "MGK" package is in use. The second way is preferable if one wants to load in scripts

into remote MGK tasks, because a task can also be specified as an optional parameter (see

[2]).

After the C object files have been prepared, compiled and loaded as described above

they are ready for use in HDL structures. Note that the names of entry points specified in

the bind macro and in the HDL primitives should exactly match, and the object modules

should be loaded before starting the building of HDL structures.

For a C script one must declare an appropriate context structure, the address of which

is going to be the only parameter for the function. It is the user's task to exactly match

with the datastructures created by the HDL interpreter, as described above. It is also the

user's task to refer to the ports of the actornode which runs the script by the appropriate

indices. The input and output ports of the actornode are identified by an index (starting

from zero), in the order they appear in the declaration.

An example for a plain C script and its corresponding HDL declaration may look like
this:

;;; HDL primitive:

(defprimitive TActor :ifany

;; One input, one output:

(In -> Out)

;; One static parameter, one dynamic:

((Add 0 :int)) ((Mult 0.0 :double))

•.. etc.

"TestActor")

/* C file containing "TestActor" */

#include "cmgkdefs.h"

/* Context table structure:

struct Context {

/* Static parameter: */

int add;

/* Dynamic parameter: */

double *mult;

);

,/

HDL/C Interface 114

/* Forward declaration: */

void TestActor();

/* Mandatory code:

start_bind

bind(TestActor)

end_bind()

,/

/* Code for the primitive:

void TestActor(cntx)

struct Context *cntx;

{

,/

double data,newdata;

/* Receive DOUBLE data: */

data = mgk_d_receive(O);

/* Multiply it with the dynamic parameter

and add the static parameter to the result:*/

newdata = data*(*(cntx->mult))+cntx->add;

/* Send the result: */

mgk_d_propagate(O,nevdata);

C.1.4 Preparing "Embedded" C scripts

When embedded scripts arc used the full script text is to be typed in the declaration. It

should be in the form of a Lisp string amd it must start and end with the characters

and }, respectively. The Lisp string facility imposes certain restrictions on the contents of

the script: quotation marks are to be escaped, (i.e. a quation mark in the string should

be written as V'), and the escape character \ is to be escaped with itself.

To use embedded C scripts offers significant advantages: the HDL interpreter generates

accessor macros for both the actornodes ports and context elements, and it compiles and

loads the script automatically. The user can refer to the ports and context elements (i.e.

the parameters) by their name. Dynamic parameters are passed by reference, therefore

the user must dereference them if he wants to get their value. And example HDL script

with embedded C code may look like this: (Note the use of escape characters which are

mandated bythe Lisp strings.)

(DEFPRIMITIVE PID-PRIM :IFALL

((SP :STREAM) (MV :STREAM) -> (CS

((ITsl 0 :INT) (IKpl 0.0 :DOUBLE)

(IEil 0.0 :DOUBLE))

((IP_resultl 0.0 :DOUBLE) (IP_errorl

(IP_P_errorl 0.0 :DOUBLE))

:STREAM))
(IKdl 0.0 :DOUBLE)

0.0 :DOUBLE)

HDL/C/n ter[ace 115

o,o

"{

double

double

double

double

printf

printf

printf

printf

sp = mgk_d_receive(SP);

mv = mgk_d_receive(MV);

error = sp - mv;

result;

(\"SP - _d\\n\", SP);

(\"MV = _d\\n\", MV) ;

(\"CS = Zd\\n\", CS);

(\"TS = Zd\\nKp = Xf\\nKi - _f\\nKd = Xf\\n\", Ts. Kp, Ki, Kd);

printf(\"P_result = OxZx\\nP_error = Ox_x\\nP_P_error = Ox_x\\n\".

P_result. P_error. P_P_error);

printf(\"*P_result = _f\\n*P_error _ _f\\n*P_P_error = _f\\n\".

*P_result, *P_error. *P_P_error);

printf(\"\\n\\n\");

result = *P_result +

Kp * ((error - *P_error)

÷(Ts * error * Ki)

+(KdlTs)*(error - 2* *P_error ÷ *P_P_error)

);

*P_P_error = *P_error;

*P_error = error;

*P_result = result;

mgk_d_propagate(CS,result);

p,)

Note that the names of the parameters are the same as in the model, but they do not have

the special Lisp marker (the I character) around them.

When the HDL interpreter is instantiating a primitive with an embedded script, it

checks whether the script is compiled and loaded yet. If not it creates a C file from the

script and calls the compiler on it. The above example has the following corresponding C

file:

#include "cmgkdefs.h"

void HdlPIDPRIM();

make_binder(init_HdlPIDPRIM)

bind(HdlPIDPRIM)

end_bind(;)

typedef struct {

int _Ts;

double _Kp;

double _Kd;

double _Ki;

HDL/C /nterface 116

double ._P_result;

double ,_P_error;

double ,_P_P_error;

} HdlPIDPRIM_cntx;

#define SP 0

#define MV 1

#define CS 0

#define Ts (_cntx->_Ts)

#define Kp (_cntx->_Kp)

#define Kd (_¢ntx->_Kd)

#define Ki (_cntx->_Ki)

#define P_result (_cntx->_P_result)

#define P_error (_cntx->_P_error)

#define P_P_error (_cntx->_P_P_error)

void HdlPIDPKIM (_cntx)

HdlPIDPKIM_cntx *_cntx;

#line 1

{
double sp = mgk_d_receive(SP);

double my = mgk_d_receive(MV);

double error = sp - my;

double result;

printf("SP = _d\n", SP) ;

printf ("1_/ = _d\n", _) ;

printf("CS = _d\n", CS) ;

printf("TS = _dknKp = _f\nKi = _f\nKd - _f\n", Ts, Kp, Ki, Kd);

printf("P_result = 0x_x\nP_error = 0x_x\nP_P_error = 0x_xkn",

P_result, P_error, P_P_error);

printf("\n\n");

result = .P_result ÷

Kp * ((error - .P_error)

+(Ts * error * Ki)

+(Kd/Ts)*(error - 2* ,P_error + .P_P_error)

);

•P_P_error = *P_error;

•P_error = error;

•P_result = result;

mgk_d_propagate(CS,result);

}

The user can force the compilation and loading of _1 the embedded scripts by c_ling the

built-in function: (hdl-compile-scripts)

HDL/C In terrace 117

There are a couple of utility macros which can be used for controlling the compilation

and loading.

(de:f-mgk-library "MGKLIBKAKYPATH")

This macro defineswhere the MGK macro filecmgkdefs .h islocated. It must be set

correctlybefore attempting any embedded scriptcompilation. It defaults to " "

(def-hdl-library "}{DLLOADLIBKARY")

This macro defineswhat second argument stringis to be passed to the loader when

the compiled scriptisloaded. The user can specifyin thisstringarbitrary object file

names and object librarynames. Itdefaults to "-Ic" (the C runtime library).

(add-hdl-library "IiDLLOADLIBRARY")

This macro prepends its argument string to the current value of loader argument

string specified in the (def-hdl-library) macro.

(add-include-library "INCLUDELIBRARY")

This macro is used to specify additional files for including at the time of compilation of

the script. Thd HDL interpreter generates lines of the following format: # include

"INCLUDELIBI_ARY". The user place the file name in the proper quotes, i.e. the

argument string should look like as "\"filenameV'", or "<filename>".

When the HDL interpreter runs the C compiler it sets the line counter of the compiler

to the first line of the script. Therefore, the C compiler error messages will refer to lines

relative to the first line of the embedded script. Unfortunately, there is no debugging

facility for the embedded scripts, thus the users are cautioned to take extreme care in

developing these scripts.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

Sztipanovits, J.: MULTIGRAPH: Architecture for Intelligent Measurement and Con-

trol Systems (Introduction and Overview). Department of Electrical Engineering, Van-

derbilt University, 1986.

Biegl, Cs.: Multigraph Kernel Interface Description, User's Manual. Department of

Electrical Engineering, Vanderbilt University, 1986.

Springfield,J.: ROBOSIM Workstation Extensions, M.Sc. Thesis, Vanderbilt Univer-

sity, 1988.

Springfield,J., Cook, G.E., Andersen, K., and Fernandez, K.R.: ROBOSIM: A Sim-

ulation Package for Robots, University Programs in Computer-Aided Engineering,

Design, and Manufacturing, ASCE, 1989.

Walter,S.E. Polygonal Collision Detection Algorithm, Ph.D. Dissertation, Cornell Uni-

versity, 1985.

Wilson,S.L. Interfacing of a Robot Simulation Package with Graphics Utilities of an

Intergraph Interpro 360 System, M.Sc. Thesis, Vanderbilt University, 1990.

118

